5 research outputs found

    Robust imputation method for missing values in microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When analyzing microarray gene expression data, missing values are often encountered. Most multivariate statistical methods proposed for microarray data analysis cannot be applied when the data have missing values. Numerous imputation algorithms have been proposed to estimate the missing values. In this study, we develop a robust least squares estimation with principal components (RLSP) method by extending the local least square imputation (LLSimpute) method. The basic idea of our method is to employ quantile regression to estimate the missing values, using the estimated principal components of a selected set of similar genes.</p> <p>Results</p> <p>Using the normalized root mean squares error, the performance of the proposed method was evaluated and compared with other previously proposed imputation methods. The proposed RLSP method clearly outperformed the weighted <it>k</it>-nearest neighbors imputation (kNNimpute) method and LLSimpute method, and showed competitive results with Bayesian principal component analysis (BPCA) method.</p> <p>Conclusion</p> <p>Adapting the principal components of the selected genes and employing the quantile regression model improved the robustness and accuracy of missing value imputation. Thus, the proposed RLSP method is, according to our empirical studies, more robust and accurate than the widely used kNNimpute and LLSimpute methods.</p

    Probabilistic modeling and machine learning in structural and systems biology

    Get PDF
    This supplement contains extended versions of a selected subset of papers presented at the workshop PMSB 2007, Probabilistic Modeling and Machine Learning in Structural and Systems Biology, Tuusula, Finland, from June 17 to 18, 2006

    Incorporating Nonlinear Relationships in Microarray Missing Value Imputation

    Get PDF
    Microarray gene expression data often contain missing values. Accurate estimation of the missing values is important for down-stream data analyses that require complete data. Nonlinear relationships between gene expression levels have not been well-utilized in missing value imputation. We propose an imputation scheme based on nonlinear dependencies between genes. By simulations based on real microarray data, we show that incorporating non-linear relationships could improve the accuracy of missing value imputation, both in terms of normalized root mean squared error and in terms of the preservation of the list of significant genes in statistical testing. In addition, we studied the impact of artificial dependencies introduced by data normalization on the simulation results. Our results suggest that methods relying on global correlation structures may yield overly optimistic simulation results when the data has been subjected to row (gene) – wise mean removal

    Improved Methods for the Imputation of Missing Data by Nearest Neighbor Methods

    Get PDF
    Missing data is an important issue in almost all fields of quantitative research. A nonparametric procedure that has been shown to be useful is the nearest neighbor imputation method. We suggest a weighted nearest neighbor imputation method based on Lq-distances. The weighted method is shown to have smaller imputation error than available NN estimates. In addition we consider weighted neighbor imputation methods that use selected distances. The careful selection of distances that carry information on the missing values yields an imputation tool that outperforms competing nearest neighbor methods distinctly. Simulation studies show that the suggested weighted imputation with selection of distances provides the smallest imputation error, in particular when the number of predictors is large. In addition, the selected procedure is applied to real data from different fields
    corecore