1,264 research outputs found

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    LSTSVR-PI: Least square twin support vector regression with privileged information

    Full text link
    In an educational setting, a teacher plays a crucial role in various classroom teaching patterns. Similarly, mirroring this aspect of human learning, the learning using privileged information (LUPI) paradigm introduces additional information to instruct learning models during the training stage. A different approach to train the twin variant of the regression model is provided by the new least square twin support vector regression using privileged information (LSTSVR-PI), which integrates the LUPI paradigm to utilize additional sources of information into the least square twin support vector regression. The proposed LSTSVR-PI solves system of linear equations which adds up to the efficiency of the model. Further, we also establish a generalization error bound based on the Rademacher complexity of the proposed model and incorporate the structural risk minimization principle. The proposed LSTSVR-PI fills the gap between the contemporary paradigm of LUPI and classical LSTSVR. Further, to assess the performance of the proposed model, we conduct numerical experiments along with the baseline models across various artificially generated and real-world datasets. The various experiments and statistical analysis infer the superiority of the proposed model. Moreover, as an application, we conduct experiments on time series datasets, which results in the superiority of the proposed LSTSVR-PI

    Grassmann Learning for Recognition and Classification

    Get PDF
    Computational performance associated with high-dimensional data is a common challenge for real-world classification and recognition systems. Subspace learning has received considerable attention as a means of finding an efficient low-dimensional representation that leads to better classification and efficient processing. A Grassmann manifold is a space that promotes smooth surfaces, where points represent subspaces and the relationship between points is defined by a mapping of an orthogonal matrix. Grassmann learning involves embedding high dimensional subspaces and kernelizing the embedding onto a projection space where distance computations can be effectively performed. In this dissertation, Grassmann learning and its benefits towards action classification and face recognition in terms of accuracy and performance are investigated and evaluated. Grassmannian Sparse Representation (GSR) and Grassmannian Spectral Regression (GRASP) are proposed as Grassmann inspired subspace learning algorithms. GSR is a novel subspace learning algorithm that combines the benefits of Grassmann manifolds with sparse representations using least squares loss §¤1-norm minimization for improved classification. GRASP is a novel subspace learning algorithm that leverages the benefits of Grassmann manifolds and Spectral Regression in a framework that supports high discrimination between classes and achieves computational benefits by using manifold modeling and avoiding eigen-decomposition. The effectiveness of GSR and GRASP is demonstrated for computationally intensive classification problems: (a) multi-view action classification using the IXMAS Multi-View dataset, the i3DPost Multi-View dataset, and the WVU Multi-View dataset, (b) 3D action classification using the MSRAction3D dataset and MSRGesture3D dataset, and (c) face recognition using the ATT Face Database, Labeled Faces in the Wild (LFW), and the Extended Yale Face Database B (YALE). Additional contributions include the definition of Motion History Surfaces (MHS) and Motion Depth Surfaces (MDS) as descriptors suitable for activity representations in video sequences and 3D depth sequences. An in-depth analysis of Grassmann metrics is applied on high dimensional data with different levels of noise and data distributions which reveals that standardized Grassmann kernels are favorable over geodesic metrics on a Grassmann manifold. Finally, an extensive performance analysis is made that supports Grassmann subspace learning as an effective approach for classification and recognition

    On the use of deep learning for phase recovery

    Full text link
    Phase recovery (PR) refers to calculating the phase of the light field from its intensity measurements. As exemplified from quantitative phase imaging and coherent diffraction imaging to adaptive optics, PR is essential for reconstructing the refractive index distribution or topography of an object and correcting the aberration of an imaging system. In recent years, deep learning (DL), often implemented through deep neural networks, has provided unprecedented support for computational imaging, leading to more efficient solutions for various PR problems. In this review, we first briefly introduce conventional methods for PR. Then, we review how DL provides support for PR from the following three stages, namely, pre-processing, in-processing, and post-processing. We also review how DL is used in phase image processing. Finally, we summarize the work in DL for PR and outlook on how to better use DL to improve the reliability and efficiency in PR. Furthermore, we present a live-updating resource (https://github.com/kqwang/phase-recovery) for readers to learn more about PR.Comment: 82 pages, 32 figure

    Positive Semidefinite Metric Learning with Boosting

    Full text link
    The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. \BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 11 pages, Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009), Vancouver, Canad

    A mathematical programming approach to SVM-based classification with label noise

    Get PDF
    The authors of this research acknowledge financial support by the Spanish Ministerio de Ciencia y Tecnologia, Agencia Estatal de Investigacion and Fondos Europeos de Desarrollo Regional (FEDER) via project PID2020114594GB-C21. The authors also acknowledge partial support from projects FEDER-US-1256951, Junta de Andalucía P18-FR-1422, CEI-3-FQM331, NetmeetData: Ayudas Fundación BBVA a equipos de investigación científica 2019. The first author was also supported by projects P18-FR-2369 (Junta de Andalucía) and IMAG-Maria de Maeztu grant CEX2020-001105-M /AEI /10.13039/501100011033. (Spanish Ministerio de Ciencia y Tecnologia).In this paper we propose novel methodologies to optimally construct Support Vector Machine-based classifiers that take into account that label noise occur in the training sample. We propose different alternatives based on solving Mixed Integer Linear and Non Linear models by incorporating decisions on relabeling some of the observations in the training dataset. The first method incorporates relabeling directly in the SVM model while a second family of methods combines clustering with classification at the same time, giving rise to a model that applies simultaneously similarity measures and SVM. Extensive computational experiments are reported based on a battery of standard datasets taken from UCI Machine Learning repository, showing the effectiveness of the proposed approaches.Spanish Ministerio de Ciencia y Tecnologia, Agencia Estatal de Investigacion and Fondos Europeos de Desarrollo Regional (FEDER) via project PID2020114594GB-C21FEDER-US-1256951Junta de Andalucía P18-FR-1422CEI-3-FQM331NetmeetData: Ayudas Fundación BBVA a equipos de investigación científica 2019Project P18-FR-2369 Junta de AndalucíaIMAG-Maria de Maeztu grant CEX2020-001105-M /AEI /10.13039/501100011033. (Spanish Ministerio de Ciencia y Tecnologia

    Novel image descriptors and learning methods for image classification applications

    Get PDF
    Image classification is an active and rapidly expanding research area in computer vision and machine learning due to its broad applications. With the advent of big data, the need for robust image descriptors and learning methods to process a large number of images for different kinds of visual applications has greatly increased. Towards that end, this dissertation focuses on exploring new image descriptors and learning methods by incorporating important visual aspects and enhancing the feature representation in the discriminative space for advancing image classification. First, an innovative sparse representation model using the complete marginal Fisher analysis (CMFA-SR) framework is proposed for improving the image classification performance. In particular, the complete marginal Fisher analysis method extracts the discriminatory features in both the column space of the local samples based within class scatter matrix and the null space of its transformed matrix. To further improve the classification capability, a discriminative sparse representation model is proposed by integrating a representation criterion such as the sparse representation and a discriminative criterion. Second, the discriminative dictionary distribution based sparse coding (DDSC) method is presented that utilizes both the discriminative and generative information to enhance the feature representation. Specifically, the dictionary distribution criterion reveals the class conditional probability of each dictionary item by using the dictionary distribution coefficients, and the discriminative criterion applies new within-class and between-class scatter matrices for discriminant analysis. Third, a fused color Fisher vector (FCFV) feature is developed by integrating the most expressive features of the DAISY Fisher vector (D-FV) feature, the WLD-SIFT Fisher vector (WS-FV) feature, and the SIFT-FV feature in different color spaces to capture the local, color, spatial, relative intensity, as well as the gradient orientation information. Furthermore, a sparse kernel manifold learner (SKML) method is applied to the FCFV features for learning a discriminative sparse representation by considering the local manifold structure and the label information based on the marginal Fisher criterion. Finally, a novel multiple anthropological Fisher kernel framework (M-AFK) is presented to extract and enhance the facial genetic features for kinship verification. The proposed method is derived by applying a novel similarity enhancement approach based on SIFT flow and learning an inheritable transformation on the multiple Fisher vector features that uses the criterion of minimizing the distance among the kinship samples and maximizing the distance among the non-kinship samples. The effectiveness of the proposed methods is assessed on numerous image classification tasks, such as face recognition, kinship verification, scene classification, object classification, and computational fine art painting categorization. The experimental results on popular image datasets show the feasibility of the proposed methods
    corecore