4 research outputs found

    Review of PID Controller Applications for UAVs

    Full text link
    Unmanned Aerial Vehicles (UAVs) have gained widespread recognition for their diverse applications, ranging from surveillance to delivery services. Among the various control algorithms employed to stabilize and navigate UAVs, the Proportional-Integral-Derivative (PID) controller stands out as a classical yet robust solution. This review provides a comprehensive examination of PID controller applications in the context of UAVs, addressing their fundamental principles, dynamics modeling, stability control, navigation tasks, parameter tuning methods, challenges, and future directions

    Aggressive maneuver oriented robust actuator fault estimation of a 3-DOF helicopter prototype considering measurement noises

    Get PDF
    This paper presents a robust actuator fault estimation strategy design for a 3-DOF helicopter prototype which can be adapted to aggressive maneuvers. First, considering large pitch angle condition during flight, nonlinear coupling characteristic of the helicopter system is exploited. As the pitch angle can be measured in real time, a polytopic linear parameter-varying (LPV) model is developed for the helicopter system. Furthermore, considering measurement noises in the actual helicopter system, the dynamical model of helicopter system is modified accordingly. Then, based on the modified polytopic LPV model, a robust unknown input observer (UIO) is developed for the helicopter system to realize actuator fault estimation, in which both measurement noises and large pitch angle are considered. Robust performance of proposed fault estimation approach is guaranteed by using energy-to-energy strategy. And the observer gains are calculated by using linear matrix inequalities. Finally, based on a 3-DOF helicopter prototype, both simulations and experiments are conducted. The effects of measurement noises and large pitch angle on the fault estimation performance are sufficiently demonstrated. And effectiveness as well as advantages of the proposed observer is verified by using comparative analysis

    Robust Formation Tracking Control for Multiple Quadrotors under Aggressive Maneuvers

    No full text
    This brief is concerned with the formation control problem of a multi-agent system composed of multiple quadrotors tasked to achieve aggressive trajectory tracking with prescribed formation patterns. An underactuated model with six degrees of freedom is considered for each quadrotor, the dynamics of which account for nonlinearities, parameter uncertainties, and external disturbances. A robust control approach is proposed that stems from linear quadratic regulation and robust compensation theory fundamentals. Theoretical analysis and simulation results validate the effectiveness of the presented theoretical framework
    corecore