17,508 research outputs found

    Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC

    Full text link
    We introduce Tempered Geodesic Markov Chain Monte Carlo (TG-MCMC) algorithm for initializing pose graph optimization problems, arising in various scenarios such as SFM (structure from motion) or SLAM (simultaneous localization and mapping). TG-MCMC is first of its kind as it unites asymptotically global non-convex optimization on the spherical manifold of quaternions with posterior sampling, in order to provide both reliable initial poses and uncertainty estimates that are informative about the quality of individual solutions. We devise rigorous theoretical convergence guarantees for our method and extensively evaluate it on synthetic and real benchmark datasets. Besides its elegance in formulation and theory, we show that our method is robust to missing data, noise and the estimated uncertainties capture intuitive properties of the data.Comment: Published at NeurIPS 2018, 25 pages with supplement

    On the inverse problem of source reconstruction from coherence measurements

    Full text link
    We consider an inverse source problem for partially coherent light propagating in the Fresnel regime. The data is the coherence of the field measured away from the source. The reconstruction is based on a minimum residue formulation, which uses the authors' recent closed-form approximation formula for the coherence of the propagated field. The developed algorithms require a small data sample for convergence and yield stable inversion by exploiting information in the coherence as opposed to intensity-only measurements. Examples with both simulated and experimental data demonstrate the ability of the proposed approach to simultaneously recover complex sources in different planes transverse to the direction of propagation

    PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference

    Full text link
    Generalized linear models (GLMs) -- such as logistic regression, Poisson regression, and robust regression -- provide interpretable models for diverse data types. Probabilistic approaches, particularly Bayesian ones, allow coherent estimates of uncertainty, incorporation of prior information, and sharing of power across experiments via hierarchical models. In practice, however, the approximate Bayesian methods necessary for inference have either failed to scale to large data sets or failed to provide theoretical guarantees on the quality of inference. We propose a new approach based on constructing polynomial approximate sufficient statistics for GLMs (PASS-GLM). We demonstrate that our method admits a simple algorithm as well as trivial streaming and distributed extensions that do not compound error across computations. We provide theoretical guarantees on the quality of point (MAP) estimates, the approximate posterior, and posterior mean and uncertainty estimates. We validate our approach empirically in the case of logistic regression using a quadratic approximation and show competitive performance with stochastic gradient descent, MCMC, and the Laplace approximation in terms of speed and multiple measures of accuracy -- including on an advertising data set with 40 million data points and 20,000 covariates.Comment: In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017). v3: corrected typos in Appendix
    corecore