2,039 research outputs found

    Theoretical Bounds in Minimax Decentralized Hypothesis Testing

    Full text link
    Minimax decentralized detection is studied under two scenarios: with and without a fusion center when the source of uncertainty is the Bayesian prior. When there is no fusion center, the constraints in the network design are determined. Both for a single decision maker and multiple decision makers, the maximum loss in detection performance due to minimax decision making is obtained. In the presence of a fusion center, the maximum loss of detection performance between with- and without fusion center networks is derived assuming that both networks are minimax robust. The results are finally generalized.Comment: Submitted to IEEE Trans. on Signal Processin

    Distributed Detection in Sensor Networks with Limited Range Sensors

    Full text link
    We consider a multi-object detection problem over a sensor network (SNET) with limited range sensors. This problem complements the widely considered decentralized detection problem where all sensors observe the same object. While the necessity for global collaboration is clear in the decentralized detection problem, the benefits of collaboration with limited range sensors is unclear and has not been widely explored. In this paper we develop a distributed detection approach based on recent development of the false discovery rate (FDR). We first extend the FDR procedure and develop a transformation that exploits complete or partial knowledge of either the observed distributions at each sensor or the ensemble (mixture) distribution across all sensors. We then show that this transformation applies to multi-dimensional observations, thus extending FDR to multi-dimensional settings. We also extend FDR theory to cases where distributions under both null and positive hypotheses are uncertain. We then propose a robust distributed algorithm to perform detection. We further demonstrate scalability to large SNETs by showing that the upper bound on the communication complexity scales linearly with the number of sensors that are in the vicinity of objects and is independent of the total number of sensors. Finally, we deal with situations where the sensing model may be uncertain and establish robustness of our techniques to such uncertainties.Comment: Submitted to IEEE Transactions on Signal Processin

    Asymptotic Optimality Theory For Decentralized Sequential Multihypothesis Testing Problems

    Full text link
    The Bayesian formulation of sequentially testing M≥3M \ge 3 hypotheses is studied in the context of a decentralized sensor network system. In such a system, local sensors observe raw observations and send quantized sensor messages to a fusion center which makes a final decision when stopping taking observations. Asymptotically optimal decentralized sequential tests are developed from a class of "two-stage" tests that allows the sensor network system to make a preliminary decision in the first stage and then optimize each local sensor quantizer accordingly in the second stage. It is shown that the optimal local quantizer at each local sensor in the second stage can be defined as a maximin quantizer which turns out to be a randomization of at most M−1M-1 unambiguous likelihood quantizers (ULQ). We first present in detail our results for the system with a single sensor and binary sensor messages, and then extend to more general cases involving any finite alphabet sensor messages, multiple sensors, or composite hypotheses.Comment: 14 pages, 1 figure, submitted to IEEE Trans. Inf. Theor

    Distributed Detection and Estimation in Wireless Sensor Networks

    Full text link
    In this article we consider the problems of distributed detection and estimation in wireless sensor networks. In the first part, we provide a general framework aimed to show how an efficient design of a sensor network requires a joint organization of in-network processing and communication. Then, we recall the basic features of consensus algorithm, which is a basic tool to reach globally optimal decisions through a distributed approach. The main part of the paper starts addressing the distributed estimation problem. We show first an entirely decentralized approach, where observations and estimations are performed without the intervention of a fusion center. Then, we consider the case where the estimation is performed at a fusion center, showing how to allocate quantization bits and transmit powers in the links between the nodes and the fusion center, in order to accommodate the requirement on the maximum estimation variance, under a constraint on the global transmit power. We extend the approach to the detection problem. Also in this case, we consider the distributed approach, where every node can achieve a globally optimal decision, and the case where the decision is taken at a central node. In the latter case, we show how to allocate coding bits and transmit power in order to maximize the detection probability, under constraints on the false alarm rate and the global transmit power. Then, we generalize consensus algorithms illustrating a distributed procedure that converges to the projection of the observation vector onto a signal subspace. We then address the issue of energy consumption in sensor networks, thus showing how to optimize the network topology in order to minimize the energy necessary to achieve a global consensus. Finally, we address the problem of matching the topology of the network to the graph describing the statistical dependencies among the observed variables.Comment: 92 pages, 24 figures. To appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, Eds., Elsevier, 201

    Quickest Change Detection of a Markov Process Across a Sensor Array

    Full text link
    Recent attention in quickest change detection in the multi-sensor setting has been on the case where the densities of the observations change at the same instant at all the sensors due to the disruption. In this work, a more general scenario is considered where the change propagates across the sensors, and its propagation can be modeled as a Markov process. A centralized, Bayesian version of this problem, with a fusion center that has perfect information about the observations and a priori knowledge of the statistics of the change process, is considered. The problem of minimizing the average detection delay subject to false alarm constraints is formulated as a partially observable Markov decision process (POMDP). Insights into the structure of the optimal stopping rule are presented. In the limiting case of rare disruptions, we show that the structure of the optimal test reduces to thresholding the a posteriori probability of the hypothesis that no change has happened. We establish the asymptotic optimality (in the vanishing false alarm probability regime) of this threshold test under a certain condition on the Kullback-Leibler (K-L) divergence between the post- and the pre-change densities. In the special case of near-instantaneous change propagation across the sensors, this condition reduces to the mild condition that the K-L divergence be positive. Numerical studies show that this low complexity threshold test results in a substantial improvement in performance over naive tests such as a single-sensor test or a test that wrongly assumes that the change propagates instantaneously.Comment: 40 pages, 5 figures, Submitted to IEEE Trans. Inform. Theor

    Distributed Decision Through Self-Synchronizing Sensor Networks in the Presence of Propagation Delays and Asymmetric Channels

    Full text link
    In this paper we propose and analyze a distributed algorithm for achieving globally optimal decisions, either estimation or detection, through a self-synchronization mechanism among linearly coupled integrators initialized with local measurements. We model the interaction among the nodes as a directed graph with weights (possibly) dependent on the radio channels and we pose special attention to the effect of the propagation delay occurring in the exchange of data among sensors, as a function of the network geometry. We derive necessary and sufficient conditions for the proposed system to reach a consensus on globally optimal decision statistics. One of the major results proved in this work is that a consensus is reached with exponential convergence speed for any bounded delay condition if and only if the directed graph is quasi-strongly connected. We provide a closed form expression for the global consensus, showing that the effect of delays is, in general, the introduction of a bias in the final decision. Finally, we exploit our closed form expression to devise a double-step consensus mechanism able to provide an unbiased estimate with minimum extra complexity, without the need to know or estimate the channel parameters.Comment: To be published on IEEE Transactions on Signal Processin
    • …
    corecore