2 research outputs found

    A Composite Sliding Mode Control for SPMSM Drives Based on a New Hybrid Reaching Law with Disturbance Compensation

    Full text link
    This article presents a composite sliding mode control (CSMC) method for speed control of surface-mounted permanent magnet synchronous motors (SPMSMs). The proposed CSMC consists of a new sliding mode control (SMC) based on a novel hybrid reaching law (HRL) and an extended sliding mode disturbance observer (ESMDO). The new HRL is composed of two parts: A terminal reaching part and an exponential plus proportional reaching part. It can effectively suppress the chattering and reduce the reaching time compared with the conventional constant plus proportional rate reaching law (CPRL). The ESMDO is designed based on CPRL. It can estimate the extra chattering produced by the drive system's lumped disturbance and compensate for the controller's output. Based on the proposed new SMC and ESMDO, an antidisturbance sliding mode speed controller is designed to improve the performance of SPMSM drive systems. The performance of the proposed method has been validated experimentally and compared with the CPRL-based SMC methods under different conditions

    Research and Implement of PMSM Regenerative Braking Control for Electric Vehicle

    Get PDF
    As the society pays more and more attention to the environment pollution and energy crisis, the electric vehicle (EV) development also entered in a new era. With the development of motor speed control technology and the improvement of motor performance, although the dynamic performance and economical cost of EVs are both better than the internal-combustion engine vehicle (ICEV), the driving range limit and charging station distribution are two major problems which limit the popularization of EVs. In order to extend driving range for EVs, regenerative braking (RB) emerges which is able to recover energy during the braking process to improve the energy efficiency. This thesis aims to investigate the RB based pure electric braking system and its implementation. There are many forms of RB system such as fully electrified braking system and blended braking system (BBS) which is equipped both electric RB system and hydraulic braking (HB) system. In this thesis the main research objective is the RB based fully electrified braking system, however, RB system cannot satisfy all braking situation only by itself. Because the regenerating electromagnetic torque may be too small to meet the braking intention of the driver when the vehicle speed is very low and the regenerating electromagnetic torque may be not enough to stop the vehicle as soon as possible in the case of emergency braking. So, in order to ensure braking safety and braking performance, braking torque should be provided with different forms regarding different braking situation and different braking intention. In this thesis, braking torque is classified into three types. First one is normal reverse current braking when the vehicle speed is too low to have enough RB torque. Second one is RB torque which could recover kinetic energy by regenerating electricity and collecting electric energy into battery packs. The last braking situation is emergency where the braking torque is provided by motor plugging braking based on the optimal slip ratio braking control strategy. Considering two indicators of the RB system which are regenerative efficiency and braking safety, a trade-off point should be found and the corresponding control strategy should be designed. In this thesis, the maximum regenerative efficiency is obtained by a braking torque distribution strategy between front wheel and rear wheel based on a maximum available RB torque estimation method and ECE-R13 regulation. And the emergency braking performance is ensured by a novel fractional-order integral sliding mode control (FOISMC) and numerical simulations show that the control performance is better than the conventional sliding mode controller
    corecore