4,038 research outputs found

    Blind equalization based on spatial and temporal diversity in block coded modulations

    Get PDF
    Linear block codes can be applied in spatial and/or temporal diversity receivers in order to develop high performance schemes for blind equalization in mobile communications. The proposed technique uses the structure of the encoded transmitted information (with redundancy) to achieve equalization schemes based on a deterministic criterion. Simulations show that the proposed technique is more efficient than other schemes that follow similar equalizer structures. The result is an algorithm that provides the design of blind channel equalizers in low EbNo scenarios.Peer ReviewedPostprint (published version

    Blind joint maximum likelihood channel estimation and data detection for single-input multiple-output systems

    No full text
    A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of single-input multiple-output (SIMO) systems. The joint ML optimization of the channel and data estimation is decomposed into an iterative optimization loop. An efficient global optimization algorithm termed as the repeated weighted boosting aided search is employed first to identify the unknown SIMO channel model, and then the Viterbi algorithm is used for the maximum likelihood sequence estimation of the unknown data sequence. A simulation example is used for demonstrating the efficiency of this joint ML optimization scheme designed for blind adaptive SIMO systems

    Semiblind Channel Estimation and Data Detection for OFDM Systems With Optimal Pilot Design

    Get PDF
    This paper considers semiblind channel estimation and data detection for orthogonal frequency-division multiplexing (OFDM) over frequency-selective fading channels. We show that the samples of an OFDM symbol are jointly complex Gaussian distributed, where the mean and covariance are determined by the locations and values of fixed pilot symbols. We exploit this distribution to derive a novel maximum-likelihood (ML) semiblind gradient-descent channel estimator. By exploiting the channel impulse response (CIR) statistics, we also derive a semiblind data detector for both Rayleigh and Ricean fading channels. Furthermore, we develop an enhanced data detector, which uses the estimator error statistics to mitigate the effect of channel estimation errors. Efficient implementation of both the semiblind and the improved data detectors is provided via sphere decoding and nulling-canceling detection. We also derive the Cramér-Rao bound (CRB) and design optimal pilots by minimizing the CRB. Our proposed channel estimator and data detector exhibit high bandwidth efficiency (requiring only a few pilot symbols), achieve the CRB, and also nearly reach the performance of an ideal reference receiver

    Joint optimization of transceivers with fractionally spaced equalizers

    Get PDF
    In this paper we propose a method for joint optimization of transceivers with fractionally spaced equalization (FSE). We use the effective single-input multiple-output (SIMO) model for the fractionally spaced receiver. Since the FSE is used at the receiver, the optimized precoding scheme should be changed correspondingly. Simulation shows that the proposed method demonstrates remarkable improvement for jointly optimal linear transceivers as well as transceivers with decision feedback

    Joint data detection and channel estimation for OFDM systems

    Get PDF
    We develop new blind and semi-blind data detectors and channel estimators for orthogonal frequency-division multiplexing (OFDM) systems. Our data detectors require minimizing a complex, integer quadratic form in the data vector. The semi-blind detector uses both channel correlation and noise variance. The quadratic for the blind detector suffers from rank deficiency; for this, we give a low-complexity solution. Avoiding a computationally prohibitive exhaustive search, we solve our data detectors using sphere decoding (SD) and V-BLAST and provide simple adaptations of the SD algorithm. We consider how the blind detector performs under mismatch, generalize the basic data detectors to nonunitary constellations, and extend them to systems with pilots and virtual carriers. Simulations show that our data detectors perform well
    corecore