3 research outputs found

    Two-Way Training for Discriminatory Channel Estimation in Wireless MIMO Systems

    Full text link
    This work examines the use of two-way training to efficiently discriminate the channel estimation performances at a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. This work improves upon the original discriminatory channel estimation (DCE) scheme proposed by Chang et al where multiple stages of feedback and retraining were used. While most studies on physical layer secrecy are under the information-theoretic framework and focus directly on the data transmission phase, studies on DCE focus on the training phase and aim to provide a practical signal processing technique to discriminate between the channel estimation performances at LR and UR. A key feature of DCE designs is the insertion of artificial noise (AN) in the training signal to degrade the channel estimation performance at UR. To do so, AN must be placed in a carefully chosen subspace based on the transmitter's knowledge of LR's channel in order to minimize its effect on LR. In this paper, we adopt the idea of two-way training that allows both the transmitter and LR to send training signals to facilitate channel estimation at both ends. Both reciprocal and non-reciprocal channels are considered and a two-way DCE scheme is proposed for each scenario. {For mathematical tractability, we assume that all terminals employ the linear minimum mean square error criterion for channel estimation. Based on the mean square error (MSE) of the channel estimates at all terminals,} we formulate and solve an optimization problem where the optimal power allocation between the training signal and AN is found by minimizing the MSE of LR's channel estimate subject to a constraint on the MSE achievable at UR. Numerical results show that the proposed DCE schemes can effectively discriminate between the channel estimation and hence the data detection performances at LR and UR.Comment: 1

    Two-way training for discriminatory channel estimation in wireless MIMO systems

    No full text
    This work examines the use of two-way training to efficiently discriminate the channel estimation performances at a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. This work improves upon the original discriminatory channel estimation (DCE) scheme proposed by Chang where multiple stages of feedback and retraining were used. While most studies on physical layer secrecy are under the information-theoretic framework and focus directly on the data transmission phase, studies on DCE focus on the training phase and aim to provide a practical signal processing technique to discriminate between the channel estimation performances (and, thus, the effective received signal qualities) at LR and UR. A key feature of DCE designs is the insertion of artificial noise (AN) in the training signal to degrade the channel estimation performance at UR. To do so, AN must be placed in a carefully chosen subspace, based on the transmitter's knowledge of LR's channel, in order to minimize its effect on LR. In this paper, we adopt the idea of two-way training that allows both the transmitter and LR to send training signals to facilitate channel estimation at both ends. Both reciprocal and nonreciprocal channels are considered and a two-way DCE scheme is proposed for each scenario. For mathematical tractability, we assume that all terminals employ the linear minimum mean square error criterion for channel estimation. Based on the mean square error (MSE) of the channel estimates at all terminals, we formulate and solve an optimization problem where the optimal power allocation between the training signal and AN is found by minimizing the MSE of LR's channel estimate subject to a constraint on the MSE achievable at UR. Numerical results show that the proposed DCE schemes can effectively discriminate between the channel estimation and, hence, the data detection performances at LR and UR.This work was supported in part by the National Science Council, Taiwan, by Grant NSC 100-2628-E-007-025-MY3 and Grant NSC 101-2218-E-011-043, and in part by the Australian Research Council's Discovery Projects Funding Scheme (Project no.DP110102548)

    Robust beamforming in the MISO downlink with quadratic channel estimation and optimal training

    No full text
    Estimation of the channel state information (CSI) in quadratic form (i.e., quadratic channel estimation) in the downlink can be performed at the base station by using the relayed signals from the mobile users, which facilitates optimization with transmitter CSI. In this letter, the condition for the optimal training sequence for quadratic channel estimation in a multiuser multiple-input single-output (MISO) antenna system in the downlink is first obtained. The mean-square-error (MSE) in the CSI estimate is then analyzed. Based on the quadratic CSI estimates, a robust beamforming optimization algorithm to minimize the base station power while achieving individual users quality-of-service (QoS) constraints, measured by the MSE in data reception, is proposed. © 2006 IEEE.link_to_subscribed_fulltex
    corecore