14 research outputs found

    Horizontal Federated Learning and Secure Distributed Training for Recommendation System with Intel SGX

    Full text link
    With the advent of big data era and the development of artificial intelligence and other technologies, data security and privacy protection have become more important. Recommendation systems have many applications in our society, but the model construction of recommendation systems is often inseparable from users' data. Especially for deep learning-based recommendation systems, due to the complexity of the model and the characteristics of deep learning itself, its training process not only requires long training time and abundant computational resources but also needs to use a large amount of user data, which poses a considerable challenge in terms of data security and privacy protection. How to train a distributed recommendation system while ensuring data security has become an urgent problem to be solved. In this paper, we implement two schemes, Horizontal Federated Learning and Secure Distributed Training, based on Intel SGX(Software Guard Extensions), an implementation of a trusted execution environment, and TensorFlow framework, to achieve secure, distributed recommendation system-based learning schemes in different scenarios. We experiment on the classical Deep Learning Recommendation Model (DLRM), which is a neural network-based machine learning model designed for personalization and recommendation, and the results show that our implementation introduces approximately no loss in model performance. The training speed is within acceptable limits.Comment: 5 pages, 8 figure

    DeepSweep: An Evaluation Framework for Mitigating DNN Backdoor Attacks using Data Augmentation

    Full text link
    Public resources and services (e.g., datasets, training platforms, pre-trained models) have been widely adopted to ease the development of Deep Learning-based applications. However, if the third-party providers are untrusted, they can inject poisoned samples into the datasets or embed backdoors in those models. Such an integrity breach can cause severe consequences, especially in safety- and security-critical applications. Various backdoor attack techniques have been proposed for higher effectiveness and stealthiness. Unfortunately, existing defense solutions are not practical to thwart those attacks in a comprehensive way. In this paper, we investigate the effectiveness of data augmentation techniques in mitigating backdoor attacks and enhancing DL models' robustness. An evaluation framework is introduced to achieve this goal. Specifically, we consider a unified defense solution, which (1) adopts a data augmentation policy to fine-tune the infected model and eliminate the effects of the embedded backdoor; (2) uses another augmentation policy to preprocess input samples and invalidate the triggers during inference. We propose a systematic approach to discover the optimal policies for defending against different backdoor attacks by comprehensively evaluating 71 state-of-the-art data augmentation functions. Extensive experiments show that our identified policy can effectively mitigate eight different kinds of backdoor attacks and outperform five existing defense methods. We envision this framework can be a good benchmark tool to advance future DNN backdoor studies
    corecore