10 research outputs found

    Time-Synchronized Full System State Estimation Considering Practical Implementation Challenges

    Full text link
    As phasor measurement units (PMUs) are usually placed on the highest voltage buses, many lower voltage levels of the bulk power system are not observed by them. This lack of visibility makes time-synchronized state estimation of the full system a challenging problem. We propose a Deep Neural network-based State Estimator (DeNSE) to overcome this problem. The DeNSE employs a Bayesian framework to indirectly combine inferences drawn from slow timescale but widespread supervisory control and data acquisition (SCADA) data with fast timescale but local PMU data to attain sub-second situational awareness of the entire system. The practical utility of the proposed approach is demonstrated by considering topology changes, non-Gaussian measurement noise, and bad data detection and correction. The results obtained using the IEEE 118-bus system show the superiority of the DeNSE over a purely SCADA state estimator, a SCADA-PMU hybrid state estimator, and a PMU-only linear state estimator from a techno-economic viability perspective. Lastly, the scalability of the DeNSE is proven by performing state estimation on a large and realistic 2000-bus Synthetic Texas system

    Optimization and Learning Methods for Electric Distribution Network Management

    Get PDF
    University of Minnesota Ph.D. dissertation.June 2019. Major: Electrical Engineering. Advisor: Nicholas Sidiropoulos. 1 computer file (PDF); ix, 108 pages.Distribution system state estimation (DSSE) is a core task for monitoring and control of distribution networks. Widely used Gauss-Newton approaches are not suitable for real-time estimation, often require many iterations to obtain reasonable results, and sometimes fail to converge. Learning-based approaches hold the promise for accurate real-time estimation. This dissertation presents the first data-driven approach to `learn to initialize' -- that is, map the available measurements to a point in the neighborhood of the true latent states (network voltages), which is used to initialize Gauss-Newton. In addition, a novel learning model is also presented that utilizes the electrical network structure. The proposed neural network architecture reduces the number of coefficients needed to parameterize the mapping from the measurements to the network state by exploiting the separability of the estimation problem. The proposed approach is the first that leverages electrical laws and grid topology to design the neural network for DSSE. It is shown that the proposed approaches yield superior performance in terms of stability, accuracy, and runtime, compared to conventional optimization-based solvers. The second part of the dissertation focuses on the AC Optimal Power Flow (OPF) problem for multi-phase systems. Particular emphasis is given to systems with large-scale integration of renewables, where adjustments of real and reactive output power from renewable sources of energy are necessary in order to enforce voltage regulation. The AC OPF problem is known to be nonconvex (and, in fact, NP-hard). Convex relaxation techniques have been recently explored to solve the OPF task with reduced computational burden; however, sufficient conditions for tightness of these relaxations are only available for restricted classes of system topologies and problem setups. Identifying feasible power-flow solutions remains hard in more general problem formulations, especially in unbalanced multi-phase systems with renewables. To identify feasible and optimal AC OPF solutions in challenging scenarios where existing methods may fail, this dissertation leverages the Feasible Point Pursuit - Successive Convex Approximation algorithm – a powerful approach for general nonconvex quadratically constrained quadratic programs. The merits of the approach are illustrated using several multi-phase distribution networks with renewables

    Robust and Scalable Power System State Estimation via Composite Optimization

    No full text
    corecore