283 research outputs found

    Robust Video Watermarking of H.264/AVC

    Full text link

    End-to-end security for video distribution

    Get PDF

    Content Fragile Watermarking for H.264/AVC Video Authentication

    Get PDF
    Discrete Cosine transform (DCT) to generate the authentication data that are treated as a fragile watermark. This watermark is embedded in the motion vectors (MVs) The advances in multimedia technologies and digital processing tools have brought with them new challenges for the source and content authentication. To ensure the integrity of the H.264/AVC video stream, we introduce an approach based on a content fragile video watermarking method using an independent authentication of each Group of Pictures (GOPs) within the video. This technique uses robust visual features extracted from the video pertaining to the set of selected macroblocs (MBs) which hold the best partition mode in a tree-structured motion compensation process. An additional security degree is offered by the proposed method through using a more secured keyed function HMAC-SHA-256 and randomly choosing candidates from already selected MBs. In here, the watermark detection and verification processes are blind, whereas the tampered frames detection is not since it needs the original frames within the tampered GOPs. The proposed scheme achieves an accurate authentication technique with a high fragility and fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its ability to detect the tampered frames in case of spatial, temporal and colour manipulations, is confirmed

    Robust drift-free bit-rate preserving H.264 watermarking

    Get PDF
    International audienceThis paper presents a novel method for open-loop watermarking of H.264/AVC bitstreams. Existing watermarking algorithms designed for previous encoders, such as MPEG-2 cannot be directly applied to H.264/AVC, as H.264/AVC implements numerous new features that were not considered in previous coders. In contrast to previous watermarking techniques for H.264/AVC bitstreams, which embed the information after the reconstruction loop and perform drift compensation, we propose a completely new intra-drift-free watermarking algorithm. The major design goals of this novel H.264/AVC watermarking algorithm are runtime-efficiency, high perceptual quality, (almost) no bit-rate increase and robustness to re-compression. The watermark is extremely runtime-efficiently embedded in the compressed domain after the reconstruction loop, i.e., all prediction results are reused. Nevertheless, intra-drift is avoided, as the watermark is embedded in such a way that the pixels used for the prediction are kept unchanged. Thus, there is no drift as the pixels being used in the intra-prediction process of H.264/AVC are not modified. For watermark detection, we use a two-stage cross-correlation. Our simulation results confirm that the proposed technique is robust against re-encoding and shows a negligible impact on both the bit-rate and the visual quality

    Robust video transmission using reversible watermarking techniques

    Get PDF
    This paper presents a novel error-resilient strategy which employs a reversible watermarking technique to protect the H.264/AVC video content. The proposed scheme adopts reversible watermarking to embed an error detection codeword within every Macro block (MB). The watermark is then extracted at the decoder and used to detect the corrupted MBs to be concealed. The proposed scheme further manages to recover the original video content after watermark extraction, thus providing no loss in video quality. The simulation results demonstrate that the proposed approach provides a substantial gain of up to 2.6 dB in Peak Signal-to-Noise Ratio (PSNR) relative to the standard with a minimal increase in complexity.peer-reviewe

    Digital rights management techniques for H.264 video

    Get PDF
    This work aims to present a number of low-complexity digital rights management (DRM) methodologies for the H.264 standard. Initially, requirements to enforce DRM are analyzed and understood. Based on these requirements, a framework is constructed which puts forth different possibilities that can be explored to satisfy the objective. To implement computationally efficient DRM methods, watermarking and content based copy detection are then chosen as the preferred methodologies. The first approach is based on robust watermarking which modifies the DC residuals of 4×4 macroblocks within I-frames. Robust watermarks are appropriate for content protection and proving ownership. Experimental results show that the technique exhibits encouraging rate-distortion (R-D) characteristics while at the same time being computationally efficient. The problem of content authentication is addressed with the help of two methodologies: irreversible and reversible watermarks. The first approach utilizes the highest frequency coefficient within 4×4 blocks of the I-frames after CAVLC en- tropy encoding to embed a watermark. The technique was found to be very effect- ive in detecting tampering. The second approach applies the difference expansion (DE) method on IPCM macroblocks within P-frames to embed a high-capacity reversible watermark. Experiments prove the technique to be not only fragile and reversible but also exhibiting minimal variation in its R-D characteristics. The final methodology adopted to enforce DRM for H.264 video is based on the concept of signature generation and matching. Specific types of macroblocks within each predefined region of an I-, B- and P-frame are counted at regular intervals in a video clip and an ordinal matrix is constructed based on their count. The matrix is considered to be the signature of that video clip and is matched with longer video sequences to detect copies within them. Simulation results show that the matching methodology is capable of not only detecting copies but also its location within a longer video sequence. Performance analysis depict acceptable false positive and false negative rates and encouraging receiver operating charac- teristics. Finally, the time taken to match and locate copies is significantly low which makes it ideal for use in broadcast and streaming applications

    Recent Advances in Watermarking for Scalable Video Coding

    Get PDF

    Resilient video coding using difference expansion and histogram modification

    Get PDF
    Recent advances in multimedia technology have paved the way to the development of several applications, including digital TV broadcasting, mobile TV, mobile gaming and telemedicine. Nonetheless, real time multimedia services still provide challenges as reliable delivery of the content cannot be guaranteed. The video compression standards incorporate error resilient mechanisms to mitigate this effect. However, these methods assume a packet-loss scenario, where corrupted slices are dropped and concealed by the decoder. This paper presents the application of reversible watermarking techniques to facilitate the detection of corrupted macroblocks. A variable checksum is embedded within the coefficient levels and motion vectors, which is then used by the decoder to detect corrupted macroblocks which are concealed. The proposed method employs difference expansion to protect the level values while histogram modification was employed to protect the motion vectors. Unlike previous published work by the same author, this scheme does not need the transmission of side information to aid the recovery of the original level and motion vector values. Simulation results have indicated that significant gains in performance can be achieved over the H.264/AVC standard.peer-reviewe

    Global motion compensated visual attention-based video watermarking

    Get PDF
    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking
    • …
    corecore