2,743 research outputs found

    Multi-Source Cooperative Communication with Opportunistic Interference Cancelling Relays

    Full text link
    In this paper we present a multi-user cooperative protocol for wireless networks. Two sources transmit simultaneously their information blocks and relays employ opportunistically successive interference cancellation (SIC) in an effort to decode them. An adaptive decode/amplify-and-forward scheme is applied at the relays to the decoded blocks or their sufficient statistic if decoding fails. The main feature of the protocol is that SIC is exploited in a network since more opportunities arise for each block to be decoded as the number of used relays NRU is increased. This feature leads to benefits in terms of diversity and multiplexing gains that are proven with the help of an analytical outage model and a diversity-multiplexing tradeoff (DMT) analysis. The performance improvements are achieved without any network synchronization and coordination. In the final part of this work the closed-form outage probability model is used by a novel approach for offline pre-selection of the NRU relays, that have the best SIC performance, from a larger number of NR nodes. The analytical results are corroborated with extensive simulations, while the protocol is compared with orthogonal and multi-user protocols reported in the literature.Comment: in IEEE Transactions on Communications, 201

    To Harvest and Jam: A Paradigm of Self-Sustaining Friendly Jammers for Secure AF Relaying

    Get PDF
    This paper studies the use of multi-antenna harvest-and-jam (HJ) helpers in a multi-antenna amplify-and-forward (AF) relay wiretap channel assuming that the direct link between the source and destination is broken. Our objective is to maximize the secrecy rate at the destination subject to the transmit power constraints of the AF relay and the HJ helpers. In the case of perfect channel state information (CSI), the joint optimization of the artificial noise (AN) covariance matrix for cooperative jamming and the AF beamforming matrix is studied using semi-definite relaxation (SDR) which is tight, while suboptimal solutions are also devised with lower complexity. For the imperfect CSI case, we provide the equivalent reformulation of the worst-case robust optimization to maximize the minimum achievable secrecy rate. Inspired by the optimal solution to the case of perfect CSI, a suboptimal robust scheme is proposed striking a good tradeoff between complexity and performance. Finally, numerical results for various settings are provided to evaluate the proposed schemes.Comment: 16 pages (double column), 8 figures, submitted for possible journal publicatio

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Cooperative network-coding system for wireless sensor networks

    Get PDF
    Describes a cooperative network coding system for wireless sensor networks. In this paper, we propose two practical power) and bandwidth)efficient systems based on amplify)and)forward (AF) and decode)and)forward (DF) schemes to address the problem of information exchange via a relay. The key idea is to channel encode each source’s message by using a high)performance non)binary turbo code based on Partial Unit Memory (PUM) codes to enhance the bit)error)rate performance, then reduce the energy consumption and increase spectrum efficiency by using network coding (NC) to combine individual nodes’ messages at the relay before forwarding to the destination. Two simple and low complexity physical layer NC schemes are proposed based on combinations of received source messages at the relay. We also present the theoretical limits and numerical analysis of the proposed schemes. Simulation results under Additive White Gaussian Noise, confirm that the proposed schemes achieve significant bandwidth savings and fewer transmissions over the benchmark systems which do not resort to NC. Theoretical limits for capacity and Signal to Noise Ratio behaviour for the proposed schemes are derived. The paper also proposes a cooperative strategy that is useful when insufficient combined messages are received at a node to recover the desired source messages, thus enabling the system to retrieve all packets with significantly fewer retransmission request messages
    • …
    corecore