66 research outputs found

    Robust Manifold Nonnegative Tucker Factorization for Tensor Data Representation

    Full text link
    Nonnegative Tucker Factorization (NTF) minimizes the euclidean distance or Kullback-Leibler divergence between the original data and its low-rank approximation which often suffers from grossly corruptions or outliers and the neglect of manifold structures of data. In particular, NTF suffers from rotational ambiguity, whose solutions with and without rotation transformations are equally in the sense of yielding the maximum likelihood. In this paper, we propose three Robust Manifold NTF algorithms to handle outliers by incorporating structural knowledge about the outliers. They first applies a half-quadratic optimization algorithm to transform the problem into a general weighted NTF where the weights are influenced by the outliers. Then, we introduce the correntropy induced metric, Huber function and Cauchy function for weights respectively, to handle the outliers. Finally, we introduce a manifold regularization to overcome the rotational ambiguity of NTF. We have compared the proposed method with a number of representative references covering major branches of NTF on a variety of real-world image databases. Experimental results illustrate the effectiveness of the proposed method under two evaluation metrics (accuracy and nmi)

    Partial Maximum Correntropy Regression for Robust Trajectory Decoding from Noisy Epidural Electrocorticographic Signals

    Full text link
    The Partial Least Square Regression (PLSR) exhibits admirable competence for predicting continuous variables from inter-correlated brain recordings in the brain-computer interface. However, PLSR is in essence formulated based on the least square criterion, thus, being non-robust with respect to noises. The aim of this study is to propose a new robust implementation for PLSR. To this end, the maximum correntropy criterion (MCC) is used to propose a new robust variant of PLSR, called as Partial Maximum Correntropy Regression (PMCR). The half-quadratic optimization is utilized to calculate the robust projectors for the dimensionality reduction, and the regression coefficients are optimized by a fixed-point approach. We evaluate the proposed PMCR with a synthetic example and the public Neurotycho electrocorticography (ECoG) datasets. The extensive experimental results demonstrate that, the proposed PMCR can achieve better prediction performance than the conventional PLSR and existing variants with three different performance indicators in high-dimensional and noisy regression tasks. PMCR can suppress the performance degradation caused by the adverse noise, ameliorating the decoding robustness of the brain-computer interface

    Sparse feature learning for image analysis in segmentation, classification, and disease diagnosis.

    Get PDF
    The success of machine learning algorithms generally depends on intermediate data representation, called features that disentangle the hidden factors of variation in data. Moreover, machine learning models are required to be generalized, in order to reduce the specificity or bias toward the training dataset. Unsupervised feature learning is useful in taking advantage of large amount of unlabeled data, which is available to capture these variations. However, learned features are required to capture variational patterns in data space. In this dissertation, unsupervised feature learning with sparsity is investigated for sparse and local feature extraction with application to lung segmentation, interpretable deep models, and Alzheimer\u27s disease classification. Nonnegative Matrix Factorization, Autoencoder and 3D Convolutional Autoencoder are used as architectures or models for unsupervised feature learning. They are investigated along with nonnegativity, sparsity and part-based representation constraints for generalized and transferable feature extraction

    Robust Face Recognition based on Color and Depth Information

    Get PDF
    One of the most important advantages of automatic human face recognition is its nonintrusiveness property. Face images can sometime be acquired without user's knowledge or explicit cooperation. However, face images acquired in an uncontrolled environment can appear with varying imaging conditions. Traditionally, researchers focus on tackling this problem using 2D gray-scale images due to the wide availability of 2D cameras and the low processing and storage cost of gray-scale data. Nevertheless, face recognition can not be performed reliably with 2D gray-scale data due to insu_cient information and its high sensitivity to pose, expression and illumination variations. Recent rapid development in hardware makes acquisition and processing of color and 3D data feasible. This thesis aims to improve face recognition accuracy and robustness using color and 3D information.In terms of color information usage, this thesis proposes several improvements over existing approaches. Firstly, the Block-wise Discriminant Color Space is proposed, which learns the discriminative color space based on local patches of a human face image instead of the holistic image, as human faces display different colors in different parts. Secondly, observing that most of the existing color spaces consist of at most three color components, while complementary information can be found in multiple color components across multiple color spaces and therefore the Multiple Color Fusion model is proposed to search and utilize multiple color components effectively. Lastly, two robust color face recognition algorithms are proposed. The Color Sparse Coding method can deal with face images with noise and occlusion. The Multi-linear Color Tensor Discriminant method harnesses multi-linear technique to handle non-linear data. Experiments show that all the proposed methods outperform their existing competitors.In terms of 3D information utilization, this thesis investigates the feasibility of face recognition using Kinect. Unlike traditional 3D scanners which are too slow in speed and too expensive in cost for broad face recognition applications, Kinect trades data quality for high speed and low cost. An algorithm is proposed to show that Kinect data can be used for face recognition despite its noisy nature. In order to fully utilize Kinect data, a more sophisticated RGB-D face recognition algorithm is developed which harnesses theColor Sparse Coding framework and 3D information to perform accurate face recognition robustly even under simultaneous varying conditions of poses, illuminations, expressionsand disguises

    Nonlinear subspace clustering by functional link neural networks

    Full text link
    Nonlinear subspace clustering based on a feed-forward neural network has been demonstrated to provide better clustering accuracy than some advanced subspace clustering algorithms. While this approach demonstrates impressive outcomes, it involves a balance between effectiveness and computational cost. In this study, we employ a functional link neural network to transform data samples into a nonlinear domain. Subsequently, we acquire a self-representation matrix through a learning mechanism that builds upon the mapped samples. As the functional link neural network is a single-layer neural network, our proposed method achieves high computational efficiency while ensuring desirable clustering performance. By incorporating the local similarity regularization to enhance the grouping effect, our proposed method further improves the quality of the clustering results. Additionally, we introduce a convex combination subspace clustering scheme, which combining a linear subspace clustering method with the functional link neural network subspace clustering approach. This combination approach allows for a dynamic balance between linear and nonlinear representations. Extensive experiments confirm the advancement of our methods. The source code will be released on https://lshi91.github.io/ soon

    Statistical signal processing of nonstationary tensor-valued data

    Get PDF
    Real-world signals, such as the evolution of three-dimensional vector fields over time, can exhibit highly structured probabilistic interactions across their multiple constitutive dimensions. This calls for analysis tools capable of directly capturing the inherent multi-way couplings present in such data. Yet, current analyses typically employ multivariate matrix models and their associated linear algebras which are agnostic to the global data structure and can only describe local linear pairwise relationships between data entries. To address this issue, this thesis uses the property of linear separability -- a notion intrinsic to multi-dimensional data structures called tensors -- as a linchpin to consider the probabilistic, statistical and spectral separability under one umbrella. This helps to both enhance physical meaning in the analysis and reduce the dimensionality of tensor-valued problems. We first introduce a new identifiable probability distribution which appropriately models the interactions between random tensors, whereby linear relationships are considered between tensor fibres as opposed to between individual entries as in standard matrix analysis. Unlike existing models, the proposed tensor probability distribution formulation is shown to yield a unique maximum likelihood estimator which is demonstrated to be statistically efficient. Both matrices and vectors are lower-order tensors, and this gives us a unique opportunity to consider some matrix signal processing models under the more powerful framework of multilinear tensor algebra. By introducing a model for the joint distribution of multiple random tensors, it is also possible to treat random tensor regression analyses and subspace methods within a unified separability framework. Practical utility of the proposed analysis is demonstrated through case studies over synthetic and real-world tensor-valued data, including the evolution over time of global atmospheric temperatures and international interest rates. Another overarching theme in this thesis is the nonstationarity inherent to real-world signals, which typically consist of both deterministic and stochastic components. This thesis aims to help bridge the gap between formal probabilistic theory of stochastic processes and empirical signal processing methods for deterministic signals by providing a spectral model for a class of nonstationary signals, whereby the deterministic and stochastic time-domain signal properties are designated respectively by the first- and second-order moments of the signal in the frequency domain. By virtue of the assumed probabilistic model, novel tests for nonstationarity detection are devised and demonstrated to be effective in low-SNR environments. The proposed spectral analysis framework, which is intrinsically complex-valued, is facilitated by augmented complex algebra in order to fully capture the joint distribution of the real and imaginary parts of complex random variables, using a compact formulation. Finally, motivated by the need for signal processing algorithms which naturally cater for the nonstationarity inherent to real-world tensors, the above contributions are employed simultaneously to derive a general statistical signal processing framework for nonstationary tensors. This is achieved by introducing a new augmented complex multilinear algebra which allows for a concise description of the multilinear interactions between the real and imaginary parts of complex tensors. These contributions are further supported by new physically meaningful empirical results on the statistical analysis of nonstationary global atmospheric temperatures.Open Acces
    • …
    corecore