10,966 research outputs found

    The World of Fast Moving Objects

    Full text link
    The notion of a Fast Moving Object (FMO), i.e. an object that moves over a distance exceeding its size within the exposure time, is introduced. FMOs may, and typically do, rotate with high angular speed. FMOs are very common in sports videos, but are not rare elsewhere. In a single frame, such objects are often barely visible and appear as semi-transparent streaks. A method for the detection and tracking of FMOs is proposed. The method consists of three distinct algorithms, which form an efficient localization pipeline that operates successfully in a broad range of conditions. We show that it is possible to recover the appearance of the object and its axis of rotation, despite its blurred appearance. The proposed method is evaluated on a new annotated dataset. The results show that existing trackers are inadequate for the problem of FMO localization and a new approach is required. Two applications of localization, temporal super-resolution and highlighting, are presented

    Real Time Turbulent Video Perfecting by Image Stabilization and Super-Resolution

    Full text link
    Image and video quality in Long Range Observation Systems (LOROS) suffer from atmospheric turbulence that causes small neighbourhoods in image frames to chaotically move in different directions and substantially hampers visual analysis of such image and video sequences. The paper presents a real-time algorithm for perfecting turbulence degraded videos by means of stabilization and resolution enhancement. The latter is achieved by exploiting the turbulent motion. The algorithm involves generation of a reference frame and estimation, for each incoming video frame, of a local image displacement map with respect to the reference frame; segmentation of the displacement map into two classes: stationary and moving objects and resolution enhancement of stationary objects, while preserving real motion. Experiments with synthetic and real-life sequences have shown that the enhanced videos, generated in real time, exhibit substantially better resolution and complete stabilization for stationary objects while retaining real motion.Comment: Submitted to The Seventh IASTED International Conference on Visualization, Imaging, and Image Processing (VIIP 2007) August, 2007 Palma de Mallorca, Spai

    Unsupervised Video Understanding by Reconciliation of Posture Similarities

    Full text link
    Understanding human activity and being able to explain it in detail surpasses mere action classification by far in both complexity and value. The challenge is thus to describe an activity on the basis of its most fundamental constituents, the individual postures and their distinctive transitions. Supervised learning of such a fine-grained representation based on elementary poses is very tedious and does not scale. Therefore, we propose a completely unsupervised deep learning procedure based solely on video sequences, which starts from scratch without requiring pre-trained networks, predefined body models, or keypoints. A combinatorial sequence matching algorithm proposes relations between frames from subsets of the training data, while a CNN is reconciling the transitivity conflicts of the different subsets to learn a single concerted pose embedding despite changes in appearance across sequences. Without any manual annotation, the model learns a structured representation of postures and their temporal development. The model not only enables retrieval of similar postures but also temporal super-resolution. Additionally, based on a recurrent formulation, next frames can be synthesized.Comment: Accepted by ICCV 201
    • …
    corecore