4,924 research outputs found

    Distributed Consensus of Linear Multi-Agent Systems with Switching Directed Topologies

    Full text link
    This paper addresses the distributed consensus problem for a linear multi-agent system with switching directed communication topologies. By appropriately introducing a linear transformation, the consensus problem is equivalently converted to a stabilization problem for a class of switched linear systems. Some sufficient consensus conditions are then derived by using tools from the matrix theory and stability analysis of switched systems. It is proved that consensus in such a multi-agent system can be ensured if each agent is stabilizable and each possible directed topology contains a directed spanning tree. Finally, a numerical simulation is given for illustration.Comment: The paper will be presented at the 2014 Australian Control Conference (AUCC 2014), Canberra, Australi

    Resilient Autonomous Control of Distributed Multi-agent Systems in Contested Environments

    Full text link
    An autonomous and resilient controller is proposed for leader-follower multi-agent systems under uncertainties and cyber-physical attacks. The leader is assumed non-autonomous with a nonzero control input, which allows changing the team behavior or mission in response to environmental changes. A resilient learning-based control protocol is presented to find optimal solutions to the synchronization problem in the presence of attacks and system dynamic uncertainties. An observer-based distributed H_infinity controller is first designed to prevent propagating the effects of attacks on sensors and actuators throughout the network, as well as to attenuate the effect of these attacks on the compromised agent itself. Non-homogeneous game algebraic Riccati equations are derived to solve the H_infinity optimal synchronization problem and off-policy reinforcement learning is utilized to learn their solution without requiring any knowledge of the agent's dynamics. A trust-confidence based distributed control protocol is then proposed to mitigate attacks that hijack the entire node and attacks on communication links. A confidence value is defined for each agent based solely on its local evidence. The proposed resilient reinforcement learning algorithm employs the confidence value of each agent to indicate the trustworthiness of its own information and broadcast it to its neighbors to put weights on the data they receive from it during and after learning. If the confidence value of an agent is low, it employs a trust mechanism to identify compromised agents and remove the data it receives from them from the learning process. Simulation results are provided to show the effectiveness of the proposed approach
    • …
    corecore