133 research outputs found

    A posteriori error estimation and modeling of unsaturated flow in fractured porous media

    Get PDF
    This doctoral thesis focuses on three topics: (1) modeling of unsaturated flow in fractured porous media, (2) a posteriori error estimation for mixed-dimensional elliptic equations, and (3) contributions to open-source software for complex multiphysics processes in porous media. In our first contribution, following a Discrete-Fracture Matrix (DFM) approach, we propose a model where Richards' equation governs the water flow in the matrix, whereas fractures are represented as lower-dimensional open channels, naturally providing a capillary barrier to the water flow. Therefore, water in the matrix is only allowed to imbibe the fracture if the capillary barrier is overcome. When this occurs, we assume that the water inside the fracture flows downwards without resistance and, therefore, is instantaneously at hydrostatic equilibrium. This assumption can be justifiable for fractures with sufficiently large apertures, where capillary forces play no role. Mathematically, our model can be classified as a coupled PDE-ODE system of equations with variational inequalities, in which each fracture is considered a potential seepage face. Our second contribution deals with error estimation for mixed-dimensional (mD) elliptic equations, which, in particular, model single-phase flow in fractured porous media. Here, based on the theory of functional a posteriori error estimates, we derive guaranteed upper bounds for the mD primal and mD dual variables, and two-sided bounds for the mD primal-dual pair. Moreover, we improve the standard results of the functional approach by proposing four ways of estimating the residual errors based on the conservation properties of the approximations, that is, (1) no conservation, (2) subdomain conservation, (3) local conservation, and (4) pointwise conservation. This results in sharper and fully-computable bounds when mass is conserved either locally or exactly. To our knowledge, to date, no error estimates have been available for fracture networks, including fracture intersections and floating subdomains. Our last contribution is related to the development of open-source software. First, we present the implementation of a new multipoint finite-volume-based module for unsaturated poroelasticity, compatible with the Matlab Reservoir Simulation Toolbox (MRST). Second, we present a new Python-based simulation framework for multiphysics processes in fractured porous media, named PorePy. PorePy, by design, is particularly well-suited for handling mixed-dimensional geometries, and thus optimal for DFM models. The first two contributions discussed above were implemented in PorePy.Denne avhandlingen tar for seg tre emner: (1) modellering av flyt i umettet porøst medium med sprekker, (2) a posteriori feilestimater for blandet-dimensjonale elliptiske ligninger, og (3) bidrag til åpen kildekode for komplekse multifysikk-prosesser i porøse medier. I det første bidraget anvender vi en Discrete-Fracture Matrix (DFM) (Diskret-Sprekk Matrise) metode til å sette opp en modell hvor Richard's ligning modellerer vann-flyt i matrisen, og sprekkene representeres som lavere-dimensjonale åpne kanaler, som naturlig virker som kapillærbarrierer til vann-flyten. Derfor vil vann i matrisen kun få tilgang til sprekken når kapillærbarrieren blir brutt. Når det inntreffer, antar vi at vannet i sprekken flyter nedover uten motstand, og at hydrostatisk ekvilibrium derfor inntreffer øyeblikkelig. Slike antakelser kan rettferdiggjøres for sprekker med tilstrekkelig stor apertur (åpning), hvor kapillærkrefter ikke har noen innvirkning. Fra et matematisk standpunkt kan modellen klassifiseres som en sammenkoblet PDE-ODE med variasjonelle ulikheter hvor hver sprekk behandles som en filtreringsfase. Det andre bidraget tar for seg feilestimater for blandet-dimensjonale elliptiske ligninger, som modellerer en-fase flyt i porøse medier med sprekker. Her anvender vi teorien for "funksjonal a posteriori feilestimater" til å finne øvre skranker for primær og dual variablene, samt øvre og nedre skranker for primær-dual paret. Dessuten viser vi at vi kan forbedre standardresultatene fra "funksjonal a posteriori feilestimater" ved å foreslå fire måte å estimere residualfeilen basert på bevaringsegenskapene til diskretiseringen. De fire forskjellige bevaringsegenskapene er; ingen bevaringsegenskap, under- domene bevaring, lokal bevaring og punktvis bevaring. Dette fører til skarpere skranker som er mulige å beregne når masse er bevart enten lokalt, eller eksakt. Vi kjenner ikke til andre tilgjengelige feilestimater for sprekknettverk som inkluderer snitt av sprekker og sprekkrender som ligger innenfor domenets rand. Det siste bidraget omhandler utvikling av åpen kildekode. Først presenterer vi imple- menteringen av en multipunktfluks-basert modul for flyt i umettet deformerbart porøst medium som er kompatibelt med "Matlab Reservoir Simulation Toolbox"(MRST). I tillegg presenterer vi et nytt Python-basert rammeverk for simulering av multifysikkprosesser i porøse medier med sprekker, som heter PorePy. Dette rammeverket er designet for å håndtere geometrier med blandede dimensjoner og er derfor optimalt for DFM modeller. De to første bidragene i avhandlingen (nevnt over) er implementert i PorePy.Doktorgradsavhandlin

    Balancing domain decomposition by constraints algorithms for incompressible Stokes equations with nonconforming finite element discretizations

    Get PDF
    Hybridizable Discontinuous Galerkin (HDG) is an important family of methods, which combine the advantages of both Discontinuous Galerkin in terms of flexibility and standard finite elements in terms of accuracy and efficiency. The impact of this method is partly evidenced by the prolificacy of research work in this area. Weak Galerkin (WG) is a relatively newly proposed method by introducing weak functions and generalizing the differential operator for them. This method has also drawn remarkable interests from both numerical practitioners and analysts recently. HDG and WG are different but closely related. BDDC algorithms are developed for numerical solution of elliptic problems with both methods. We prove that the optimal condition number estimate for BDDC operators with standard finite element methods can be extended to the counterparts arising from the HDG and WG methods, which are nonconforming finite element methods. Numerical experiments are conducted to verify the theoretical analysis. Further, we propose BDDC algorithms for the saddle point system arising from the Stokes equations using both HDG and WG methods. By design of the preconditioner, the iterations are restricted to a benign subspace, which makes the BDDC operator effectively positive definite thus solvable by the conjugate gradient method. We prove that the algorithm is scalable in the number of subdomains with convergence rate only dependent on subdomain problem size. The condition number bound for the BDDC preconditioned Stokes system is the same as the optimal bound for the elliptic case. Numerical results confirm the theoretical analysis

    Multiscale Modeling and Simulation of Deformation Accumulation in Fault Networks

    Get PDF
    Strain accumulation and stress release along multiscale geological fault networks are fundamental mechanisms for earthquake and rupture processes in the lithosphere. Due to long periods of seismic quiescence, the scarcity of large earthquakes and incompleteness of paleoseismic, historical and instrumental record, there is a fundamental lack of insight into the multiscale, spatio-temporal nature of earthquake dynamics in fault networks. This thesis constitutes another step towards reliable earthquake prediction and quantitative hazard analysis. Its focus lies on developing a mathematical model for prototypical, layered fault networks on short time scales as well as their efficient numerical simulation. This exposition begins by establishing a fault system consisting of layered bodies with viscoelastic Kelvin-Voigt rheology and non-intersecting faults featuring rate-and-state friction as proposed by Dieterich and Ruina. The individual bodies are assumed to experience small viscoelastic deformations, but possibly large relative tangential displacements. Thereafter, semi-discretization in time with the classical Newmark scheme of the variational formulation yields a sequence of continuous, nonsmooth, coupled, spatial minimization problems for the velocities and states in each time step, that are decoupled by means of a fixed point iteration. Subsequently, spatial discretization is based on linear and piecewise constant finite elements for the rate and state problems, respectively. A dual mortar discretization of the non-penetration constraints entails a hierarchical decomposition of the discrete solution space, that enables the localization of the non-penetration condition. Exploiting the resulting structure, an algebraic representation of the parametrized rate problem can be solved efficiently using a variant of the Truncated Nonsmooth Newton Multigrid (TNNMG) method. It is globally convergent due to nonlinear, block Gauß–Seidel type smoothing and employs nonsmooth Newton and multigrid ideas to enhance robustness and efficiency of the overall method. A key step in the TNNMG algorithm is the efficient computation of a correction obtained from a linearized, inexact Newton step. The second part addresses the numerical homogenization of elliptic variational problems featuring fractal interface networks, that are structurally similar to the ones arising in the linearized correction step of the TNNMG method. Contrary to the previous setting, this model incorporates the full spatial complexity of geological fault networks in terms of truly multiscale fractal interface geometries. Here, the construction of projections from a fractal function space to finite element spaces with suitable approximation and stability properties constitutes the main contribution of this thesis. The existence of these projections enables the application of well-known approaches to numerical homogenization, such as localized orthogonal decomposition (LOD) for the construction of multiscale discretizations with optimal a priori error estimates or subspace correction methods, that lead to algebraic solvers with mesh- and scale-independent convergence rates. Finally, numerical experiments with a single fault and the layered multiscale fault system illustrate the properties of the mathematical model as well as the efficiency, reliability and scale-independence of the suggested algebraic solver

    The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications

    Get PDF
    International audienceHybrid High-Order (HHO) methods are new generation numerical methods for models based on Partial Differential Equations with features that set them apart from traditional ones. These include: the support of polytopal meshes including non star-shaped elements and hanging nodes; the possibility to have arbitrary approximation orders in any space dimension; an enhanced compliance with the physics; a reduced computational cost thanks to compact stencil and static condensation. This monograph provides an introduction to the design and analysis of HHO methods for diffusive problems on general meshes, along with a panel of applications to advanced models in computational mechanics. The first part of the monograph lays the foundation of the method considering linear scalar second-order models, including scalar diffusion, possibly heterogeneous and anisotropic, and diffusion-advection-reaction. The second part addresses applications to more complex models from the engineering sciences: non-linear Leray-Lions problems, elasticity and incompressible fluid flows
    corecore