5,610 research outputs found

    Store-Forward and its implications for Proportional Scheduling

    Full text link
    The Proportional Scheduler was recently proposed as a scheduling algorithm for multi-hop switch networks. For these networks, the BackPressure scheduler is the classical benchmark. For networks with fixed routing, the Proportional Scheduler is maximum stable, myopic and, furthermore, will alleviate certain scaling issued found in BackPressure for large networks. Nonetheless, the equilibrium and delay properties of the Proportional Scheduler has not been fully characterized. In this article, we postulate on the equilibrium behaviour of the Proportional Scheduler though the analysis of an analogous rule called the Store-Forward allocation. It has been shown that Store-Forward has asymptotically allocates according to the Proportional Scheduler. Further, for Store-Forward networks, numerous equilibrium quantities are explicitly calculable. For FIFO networks under Store-Forward, we calculate the policies stationary distribution and end-to-end route delay. We discuss network topologies when the stationary distribution is product-form, a phenomenon which we call \emph{product form resource pooling}. We extend this product form notion to independent set scheduling on perfect graphs, where we show that non-neighbouring queues are statistically independent. Finally, we analyse the large deviations behaviour of the equilibrium distribution of Store-Forward networks in order to construct Lyapunov functions for FIFO switch networks

    Towards a Queueing-Based Framework for In-Network Function Computation

    Full text link
    We seek to develop network algorithms for function computation in sensor networks. Specifically, we want dynamic joint aggregation, routing, and scheduling algorithms that have analytically provable performance benefits due to in-network computation as compared to simple data forwarding. To this end, we define a class of functions, the Fully-Multiplexible functions, which includes several functions such as parity, MAX, and k th -order statistics. For such functions we exactly characterize the maximum achievable refresh rate of the network in terms of an underlying graph primitive, the min-mincut. In acyclic wireline networks, we show that the maximum refresh rate is achievable by a simple algorithm that is dynamic, distributed, and only dependent on local information. In the case of wireless networks, we provide a MaxWeight-like algorithm with dynamic flow splitting, which is shown to be throughput-optimal
    • 

    corecore