2 research outputs found

    Accelerated Reconstruction of Perfusion-Weighted MRI Enforcing Jointly Local and Nonlocal Spatio-temporal Constraints

    Full text link
    Perfusion-weighted magnetic resonance imaging (MRI) is an imaging technique that allows one to measure tissue perfusion in an organ of interest through the injection of an intravascular paramagnetic contrast agent (CA). Due to a preference for high temporal and spatial resolution in many applications, this modality could significantly benefit from accelerated data acquisitions. In this paper, we specifically address the problem of reconstructing perfusion MR image series from a subset of k-space data. Our proposed approach is motivated by the observation that temporal variations (dynamics) in perfusion imaging often exhibit correlation across different spatial scales. Hence, we propose a model that jointly penalizes the voxel-wise deviations in temporal gradient images obtained based on a baseline, and the patch-wise dissimilarities between the spatio-temporal neighborhoods of entire image sequence. We validate our method on dynamic susceptibility contrast (DSC)-MRI and dynamic contrast-enhanced (DCE)-MRI brain perfusion datasets acquired from 10 tumor patients in total. We provide extensive analysis of reconstruction performance and perfusion parameter estimation in comparison to state-of-the-art reconstruction methods. Experimental results on clinical datasets demonstrate that our reconstruction model can potentially achieve up to 8-fold acceleration by enabling accurate estimation of perfusion parameters while preserving spatial image details and reconstructing the complete perfusion time-intensity curves (TICs).Comment: Submission to IEEE Transactions on Medical Imaging (August 2017

    Designing contrasts for rapid, simultaneous parameter quantification and flow visualization with quantitative transient-state imaging

    Full text link
    Magnetic resonance imaging (MRI) is a remarkably powerful diagnostic technique: it generates wide-ranging information for the non-invasive study of tissue anatomy and physiology. Complementary data is normally obtained in separate measurements, either as contrast-weighted images, which are fast and simple to acquire, or as quantitative parametric maps, which offer an absolute quantification of underlying biophysical effects, such as relaxation times or flow. Here, we demonstrate how to acquire and reconstruct data in a transient-state with a dual purpose: 1 - to generate contrast-weighted images that can be adjusted to emphasise clinically relevant image biomarkers; exemplified with signal modulation according to flow to obtain angiography information, and 2 - to simultaneously infer multiple quantitative parameters with a single, highly accelerated acquisition. This is a achieved by introducing three novel elements: a model that accounts for flowing blood, a method for sequence design that incorporates both parameter encoding and signal contrast, and the reconstruction of temporally resolved contrast-weighted images. From these images we simultaneously obtain angiography projections and multiple quantitative maps. By doing so, we increase the amount of clinically relevant data without adding measurement time, creating new dimensions for biomarker exploration and adding value to MR examinations for patients and clinicians alike
    corecore