57 research outputs found

    Design and Performance Analysis of Wireless Legitimate Surveillance Systems with Radar Function

    Full text link
    Integrated sensing and communication (ISAC) has recently been considered as a promising approach to save spectrum resources and reduce hardware cost. Meanwhile, as information security becomes increasingly more critical issue, government agencies urgently need to legitimately monitor suspicious communications via proactive eavesdropping. Thus, in this paper, we investigate a wireless legitimate surveillance system with radar function. We seek to jointly optimize the receive and transmit beamforming vectors to maximize the eavesdropping success probability which is transformed into the difference of signal-to-interference-plus-noise ratios (SINRs) subject to the performance requirements of radar and surveillance. The formulated problem is challenging to solve. By employing the Rayleigh quotient and fully exploiting the structure of the problem, we apply the divide-and-conquer principle to divide the formulated problem into two subproblems for two different cases. For the first case, we aim at minimizing the total transmit power, and for the second case we focus on maximizing the jamming power. For both subproblems, with the aid of orthogonal decomposition, we obtain the optimal solution of the receive and transmit beamforming vectors in closed-form. Performance analysis and discussion of some insightful results are also carried out. Finally, extensive simulation results demonstrate the effectiveness of our proposed algorithm in terms of eavesdropping success probability

    Security Verification of Secure MANET Routing Protocols

    Get PDF
    Secure mobile ad hoc network (MANET) routing protocols are not tested thoroughly against their security properties. Previous research focuses on verifying secure, reactive, accumulation-based routing protocols. An improved methodology and framework for secure MANET routing protocol verification is proposed which includes table-based and proactive protocols. The model checker, SPIN, is selected as the core of the secure MANET verification framework. Security is defined by both accuracy and availability: a protocol forms accurate routes and these routes are always accurate. The framework enables exhaustive verification of protocols and results in a counter-example if the protocol is deemed insecure. The framework is applied to models of the Optimized Link-State Routing (OLSR) and Secure OLSR protocol against five attack vectors. These vectors are based on known attacks against each protocol. Vulnerabilities consistent with published findings are automatically revealed. No unknown attacks were found; however, future attack vectors may lead to new attacks. The new framework for verifying secure MANET protocols extends verification capabilities to table-based and proactive protocols

    Control and game-theoretic methods for secure cyber-physical-human systems

    Get PDF
    This work focuses on systems comprising tightly interconnected physical and digital components. Those, aptly named, cyber-physical systems will be the core of the Fourth Industrial Revolution. Thus, cyber-physical systems will be called upon to interact with humans, either in a cooperative fashion, or as adversaries to malicious human agents that will seek to corrupt their operation. In this work, we will present methods that enable an autonomous system to operate safely among human agents and to gain an advantage in cyber-physical security scenarios by employing tools from control, game and learning theories. Our work revolves around three main axes: unpredictability-based defense, operation among agents with bounded rationality and verification of safety properties for autonomous systems. In taking advantage of the complex nature of cyber-physical systems, our unpredictability-based defense work will focus both on attacks on actuating and sensing components, which will be addressed via a novel switching-based Moving Target Defense framework, and on Denial-of-Service attacks on the underlying network via a zero-sum game exploiting redundant communication channels. Subsequently, we will take a more abstract view of complex system security by exploring the principles of bounded rationality. We will show how attackers of bounded rationality can coordinate in inducing erroneous decisions to a system while they remain stealthy. Methods of cognitive hierarchy will be employed for decision prediction, while closed form solutions of the optimization problem and the conditions of convergence to the Nash equilibrium will be investigated. The principles of bounded rationality will be brought to control systems via the use of policy iteration algorithms, enabling data-driven attack prediction in a more realistic fashion than what can be offered by game equilibrium solutions. The issue of intelligence in security scenarios will be further considered via concepts of learning manipulation through a proposed framework where bounded rationality is understood as a hierarchy in learning, rather than optimizing, capability. This viewpoint will allow us to propose methods of exploiting the learning process of an imperfect opponent in order to affect their cognitive state via the use of tools from optimal control theory. Finally, in the context of safety, we will explore verification and compositionality properties of linear systems that are designed to be added to a cascade network of similar systems. To obfuscate the need for knowledge of the system's dynamics, we will state decentralized conditions that guarantee a specific dissipativity properties for the system, which are shown to be solved by reinforcement learning techniques. Subsequently, we will propose a framework that employs a hierarchical solution of temporal logic specifications and reinforcement learning problems for optimal tracking.Ph.D

    Facilitating wireless coexistence research

    Get PDF

    Resource-Efficient Communication in the Presence of Adversaries

    Get PDF
    This dissertation presents algorithms for achieving communication in the presence of adversarial attacks in large, decentralized, resource-constrained networks. We consider abstract single-hop communication settings where a set of senders wishes to directly communicate with a set of receivers . These results are then extended to provide resource-efficient, multi-hop communication in wireless sensor networks (WSNs), where energy is critically scarce, and peer-to-peer (P2P) networks, where bandwidth and computational power are limited. Our algorithms are provably correct in the face of attacks by a computationally bounded adversary who seeks to disrupt communication between correct participants. The first major result in this dissertation addresses a general scenario involving single-hop communication in a time-slotted network where a single sender in wishes to transmit a message to a single receiver in . The two players share a communication channel; however, there exists an adversary who aims to prevent the transmission of by periodically blocking this channel. There are costs to send, receive or block on the channel, and we ask: How much do the two players need to spend relative to the adversary in order to guarantee transmission of the message? This problem abstracts many types of conflict in information networks, and the associated costs represent an expenditure of network resources. We show that it is significantly more costly for the adversary to block than for the two players to achieve communication. Specifically, if the cost to send, receive and block in a slot are fixed constants, and the adversary spends a total of slots to try to block the message, then both the sender and receiver must be active in only O(ᵠ⁻¹ + 1) slots in expectation to transmit , where φ = (1+ √5)/2 is the golden ratio. Surprisingly, this result holds even if (1) the value of is unknown to either player; (2) the adversary knows the algorithms of both players, but not their random bits; and (3) the adversary is able to launch attacks using total knowledge of past actions of both players. Finally, these results are applied to two concrete problems. First, we consider jamming attacks in WSNs and address the fundamental task of propagating from a single device to all others in a WSN in the presence of faults; this is the problem of reliable broadcast. Second, we examine how our algorithms can mitigate application-level distributed denial-of-service attacks in wired client-server scenarios. The second major result deals with a single-hop communication problem where now consists of multiple senders and there is still a single receiver who wishes to obtain a message . However, many of the senders (strictly less than half) can be faulty, failing to send or sending incorrect messages. While the majority of the senders possess , rather than listening to all of and majority filtering on the received data, we desire an algorithm that allows the single receiver to decide on in a more efficient manner. To investigate this scenario, we define and devise algorithms for a new data streaming problem called the Bad Santa problem which models the selection dilemma faced by the receiver. With our results for the Bad Santa problem, we consider the problem of energy-efficient reliable broadcast. All previous results on reliable broadcast require devices to spend significant time in the energy-expensive receiving state which is a critical problem in WSNs where devices are typically battery powered. In a popular WSN model, we give a reliable broadcast protocol that achieves optimal fault tolerance (i.e., tolerates the maximum number of faults in this WSN model) and improves over previous results by achieving an expected quadratic decrease in the cost to each device. For the case where the number of faults is within a (1-∊)-factor of the optimal fault tolerance, for any constant ∊>0, we give a reliable broadcast protocol that improves further by achieving an expected (roughly) exponential decrease in the cost to each device. The third and final major result of this dissertation addresses single-hop communication where and both consist of multiple peers that need to communicate in an attack-resistant P2P network. There are several analytical results on P2P networks that can tolerate an adversary who controls a large number of peers and uses them to disrupt network functionality. Unfortunately, in such systems, operations such as data retrieval and message sending incur significant communication costs. Here, we employ cryptographic techniques to define two protocols both of which are more efficient than existing solutions. For a network of peers, our first protocol is deterministic with O(log²) message complexity and our second protocol is randomized with expected O(log ) message complexity; both improve over all previous results. The hidden constants and setup costs for our protocols are small and no trusted third party is required. Finally, we present an analysis showing that our protocols are practical for deployment under significant churn and adversarial behaviour
    corecore