2 research outputs found

    Robust Positioning Patterns with Low Redundancy

    Full text link
    A robust positioning pattern is a large array that allows a mobile device to locate its position by reading a possibly corrupted small window around it. In this paper, we provide constructions of binary positioning patterns, equipped with efficient locating algorithms, that are robust to a constant number of errors and have redundancy within a constant factor of optimality. Furthermore, we modify our constructions to correct rank errors and obtain binary positioning patterns robust to any errors of rank less than a constant number. Additionally, we construct qq-ary robust positioning sequences robust to a large number of errors, some of which have length attaining the upper bound. Our construction of binary positioning sequences that are robust to a constant number of errors has the least known redundancy amongst those explicit constructions with efficient locating algorithms. On the other hand, for binary robust positioning arrays, our construction is the first explicit construction whose redundancy is within a constant factor of optimality. The locating algorithms accompanying both constructions run in time cubic in sequence length or array dimension.Comment: Extended Version of SODA 2019 Pape

    Reconstruction from Noisy Substrings

    Full text link
    This paper studies the problem of encoding messages into sequences which can be uniquely recovered from some noisy observations about their substrings. The observed reads comprise consecutive substrings with some given minimum overlap. This coded reconstruction problem has applications to DNA storage. We consider both single-strand reconstruction codes and multi-strand reconstruction codes, where the message is encoded into a single strand or a set of multiple strands, respectively. Various parameter regimes are studied. New codes are constructed, some of whose rates asymptotically attain the upper bounds.Comment: 35 page
    corecore