15,885 research outputs found

    Cascade Control of PM DC Drives Via Second-Order Sliding-Mode Technique

    Get PDF
    Abstract-This paper presents a novel scheme for the speed/ position control of permanent-magnet (PM) dc motor drives. A cascade-control scheme, based on multiple instances of a secondorder sliding-mode-control (2-SMC) algorithm, is suggested, which provides accurate tracking performance under large uncertainty about the motor and load parameters. The overall control scheme is composed of three main blocks: 1) a 2-SMC-based velocity observer which uses only position measurements; 2) a 2-SMC-based velocity control loop that provides a reference command current; and 3) a 2-SMC-based current control loop generating the reference voltage. The proposed scheme has been implemented and tested experimentally on a commercial PM dc motor drive. The experimental results confirm the precise and robust performance and the ease of tuning and implementation, featured by the proposed scheme. Index Terms-Cascade control, dc motor drives, second-order sliding-mode (2-SM) control (2-SMC), SM differentiators

    Design of a Variable Reactor for Load Balancing and Harmonics Elimination

    Full text link
    This paper presents the design of a variable inductor with a rotational magnetic core whose position is controlled in a closed-loop system. This magnetic structure facilitates the impedance changes which may be used for load balancing, harmonics elimination, transient response improvement, and as a controlled reactor in static VAr compensation (SVC). The design of the inductor and analysis of its impedance change caused by positioning a movable element are carried out by using the finite element method. As a result, the variation range of the impedance is determined. The proposed variable inductor is compared with a typical SVC reactor. The results show good performances in static var compensation with higher reliability and no harmonics generated. For closed-loop control, a secondorder sliding mode controller is designed for position control of the rotating core via a DC motor. Simulation results of the proposed system present highly robust and accurate responses without control chattering in face of nonlinearities and disturbances

    Synchronization controller for a 3-RRR parallel manipulator

    Get PDF
    A 3-RRR parallel manipulator has been well-known as a closed-loop kinematic chain mechanism in which the end-effector generally a moving platform is connected to the base by several independent actuators. Performance of the robot is decided by performances of the component actuators which are independently driven by tracking controllers without acknowledging information from each other. The platform performance is degraded if any actuator could not be driven well. Therefore, this paper aims to develop an advanced synchronization (SYNC) controller for position tracking of a 3-RRR parallel robot using three DC motor-driven actuators. The proposed control scheme consists of three sliding mode controllers (SMC) to drive the actuators and a supervisory controller named PID-neural network controller (PIDNNC) to compensate the synchronization errors due to system nonlinearities, uncertainties and external disturbances. A Lyapunov stability condition is added to the PIDNNC training mechanism to ensure the robust tracking performance of the manipulator. Numerical simulations have been performed under different working conditions to demonstrate the effectiveness of the suggested control approach

    Terminal sliding mode control strategy design for second-order nonlinear system

    Full text link
    This study mainly focuses on the terminal sliding mode control (TSMC) strategy design, including an adaptive terminal sliding mode control (ATSMC) and an exact-estimator-based terminal sliding mode control (ETSMC) for second-order nonlinear dynamical systems. In the ATSMC system, an adaptive bound estimation for the lump uncertainty is proposed to ensure the system stability. On the other hand, an exact estimator is designed for exact estimating system uncertainties to solve the trouble of chattering phenomena caused by a sign function in ATSMC law in despite of the utilization of a fixed value or an adaptive tuning algorithm for the lumped uncertainty bound. The effectiveness of the proposed control schemes can be verified in numerical simulations.<br /

    Discrete-time sliding mode control of high precision linear drive using frictional model

    Get PDF
    The paper deals with high precision motion control of linear drive system. The accuracy and behavior of the linear drive system are highly affected by the non-linear frictional component compromising of stiction, viscous and stribeck effect present in the system especially in the vicinity of zero velocity. In order to achieve the high accuracy and motion it is mandatory to drive our system with low velocity resulting in many non linear phenomena like tracking error, limit cycles and undesired stick-slip motion etc. This paper discuss the design and implementation of discrete time sliding mode control along with the implementation of dynamic frictional model in order to estimate and compensate the disturbance arising due to frictional component. Experimental results are presented to illustrate the effectiveness and achievable control performance of the proposed scheme

    Sliding-mode neuro-controller for uncertain systems

    Get PDF
    In this paper, a method that allows for the merger of the good features of sliding-mode control and neural network (NN) design is presented. Design is performed by applying an NN to minimize the cost function that is selected to depend on the distance from the sliding-mode manifold, thus providing that the NN controller enforces sliding-mode motion in a closed-loop system. It has been proven that the selected cost function has no local minima in controller parameter space, so under certain conditions, selection of the NN weights guarantees that the global minimum is reached, and then the sliding-mode conditions are satisfied; thus, closed-loop motion is robust against parameter changes and disturbances. For controller design, the system states and the nominal value of the control input matrix are used. The design for both multiple-input-multiple-output and single-input-single-output systems is discussed. Due to the structure of the (M)ADALINE network used in control calculation, the proposed algorithm can also be interpreted as a sliding-mode-based control parameter adaptation scheme. The controller performance is verified by experimental results

    Sliding modes in electrical drives and motion control

    Get PDF
    In this paper application of Sliding Mode Control (SMC) to electrical drives and motion control systems is discussed. It is shown that in these applications simplicity in implementation makes concepts of SMC a very attractive design alternative. Application in electrical drives control is discussed for supply via different topologies of the supply converters. Motion control is discussed for single degree of freedom motion control systems as an extension of the control of mechanical coordinates in electrical drives. Extension to multi-body systems is discussed very briefly
    corecore