45 research outputs found

    ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector

    Full text link
    Given the ability to directly manipulate image pixels in the digital input space, an adversary can easily generate imperceptible perturbations to fool a Deep Neural Network (DNN) image classifier, as demonstrated in prior work. In this work, we propose ShapeShifter, an attack that tackles the more challenging problem of crafting physical adversarial perturbations to fool image-based object detectors like Faster R-CNN. Attacking an object detector is more difficult than attacking an image classifier, as it needs to mislead the classification results in multiple bounding boxes with different scales. Extending the digital attack to the physical world adds another layer of difficulty, because it requires the perturbation to be robust enough to survive real-world distortions due to different viewing distances and angles, lighting conditions, and camera limitations. We show that the Expectation over Transformation technique, which was originally proposed to enhance the robustness of adversarial perturbations in image classification, can be successfully adapted to the object detection setting. ShapeShifter can generate adversarially perturbed stop signs that are consistently mis-detected by Faster R-CNN as other objects, posing a potential threat to autonomous vehicles and other safety-critical computer vision systems

    Robust Synthesis of Adversarial Visual Examples Using a Deep Image Prior

    Full text link
    We present a novel method for generating robust adversarial image examples building upon the recent `deep image prior' (DIP) that exploits convolutional network architectures to enforce plausible texture in image synthesis. Adversarial images are commonly generated by perturbing images to introduce high frequency noise that induces image misclassification, but that is fragile to subsequent digital manipulation of the image. We show that using DIP to reconstruct an image under adversarial constraint induces perturbations that are more robust to affine deformation, whilst remaining visually imperceptible. Furthermore we show that our DIP approach can also be adapted to produce local adversarial patches (`adversarial stickers'). We demonstrate robust adversarial examples over a broad gamut of images and object classes drawn from the ImageNet dataset.Comment: Accepted to BMVC 201

    Adversarial Color Projection: A Projector-Based Physical Attack to DNNs

    Full text link
    Recent advances have shown that deep neural networks (DNNs) are susceptible to adversarial perturbations. Therefore, it is necessary to evaluate the robustness of advanced DNNs using adversarial attacks. However, traditional physical attacks that use stickers as perturbations are more vulnerable than recent light-based physical attacks. In this work, we propose a projector-based physical attack called adversarial color projection (AdvCP), which performs an adversarial attack by manipulating the physical parameters of the projected light. Experiments show the effectiveness of our method in both digital and physical environments. The experimental results demonstrate that the proposed method has excellent attack transferability, which endows AdvCP with effective blackbox attack. We prospect AdvCP threats to future vision-based systems and applications and propose some ideas for light-based physical attacks.Comment: arXiv admin note: substantial text overlap with arXiv:2209.0243
    corecore