8,389 research outputs found

    Power Aware Wireless File Downloading: A Constrained Restless Bandit Approach

    Full text link
    This paper treats power-aware throughput maximization in a multi-user file downloading system. Each user can receive a new file only after its previous file is finished. The file state processes for each user act as coupled Markov chains that form a generalized restless bandit system. First, an optimal algorithm is derived for the case of one user. The algorithm maximizes throughput subject to an average power constraint. Next, the one-user algorithm is extended to a low complexity heuristic for the multi-user problem. The heuristic uses a simple online index policy and its effectiveness is shown via simulation. For simple 3-user cases where the optimal solution can be computed offline, the heuristic is shown to be near-optimal for a wide range of parameters

    LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph- Matching

    Get PDF
    Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity for use with commercial mobile devices, such as smartphones or tablets. LOCATE-US is privacy-oriented and allows every device to compute its own position by fusing ultrasonic, inertial sensor measurements and map information. Ultrasonic Local Positioning Systems (ULPS) based on encoded signals are placed in critical zones that require an accuracy below a few decimeters to correct the accumulated drift errors of the inertial measurements. These systems are well suited to work at room level as walls confine acoustic waves inside. To avoid audible artifacts, the U-LPS emission is set at 41.67 kHz, and an ultrasonic acquisition module with reduced dimensions is attached to the mobile device through the USB port to capture signals. Processing in the mobile device involves an improved Time Differences of Arrival (TDOA) estimation that is fused with the measurements from an external inertial sensor to obtain real-time location and trajectory display at a 10 Hz rate. Graph-matching has also been included, considering available prior knowledge about the navigation scenario. This kind of device is an adequate platform for Location-Based Services (LBS), enabling applications such as augmented reality, guiding applications, or people monitoring and assistance. The system architecture can easily incorporate new sensors in the future, such as UWB, RFiD or others.Universidad de AlcaláJunta de Comunidades de Castilla-La ManchaAgencia Estatal de Investigació

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201
    corecore