503 research outputs found

    Robust numerical upscaling of elliptic multiscale problems at high contrast

    Get PDF
    We present a new approach to the numerical upscaling for elliptic problems with rough diffusion coefficient at high contrast. It is based on the localizable orthogonal decomposition of H1H^1 into the image and the kernel of some novel stable quasi-interpolation operators with local L2L^2-approximation properties, independent of the contrast. We identify a set of sufficient assumptions on these quasi-interpolation operators that guarantee in principle optimal convergence without pre-asymptotic effects for high-contrast coefficients. We then give an example of a suitable operator and establish the assumptions for a particular class of high-contrast coefficients. So far this is not possible without any pre-asymptotic effects, but the optimal convergence is independent of the contrast and the asymptotic range is largely improved over other discretisation schemes. The new framework is sufficiently flexible to allow also for other choices of quasi-interpolation operators and the potential for fully robust numerical upscaling at high contrast

    Numerical homogenization of elliptic PDEs with similar coefficients

    Full text link
    We consider a sequence of elliptic partial differential equations (PDEs) with different but similar rapidly varying coefficients. Such sequences appear, for example, in splitting schemes for time-dependent problems (with one coefficient per time step) and in sample based stochastic integration of outputs from an elliptic PDE (with one coefficient per sample member). We propose a parallelizable algorithm based on Petrov-Galerkin localized orthogonal decomposition (PG-LOD) that adaptively (using computable and theoretically derived error indicators) recomputes the local corrector problems only where it improves accuracy. The method is illustrated in detail by an example of a time-dependent two-pase Darcy flow problem in three dimensions

    Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient

    Get PDF
    This paper addresses a multi-scale finite element method for second order linear elliptic equations with arbitrarily rough coefficient. We propose a local oversampling method to construct basis functions that have optimal local approximation property. Our methodology is based on the compactness of the solution operator restricted on local regions of the spatial domain, and does not depend on any scale-separation or periodicity assumption of the coefficient. We focus on a special type of basis functions that are harmonic on each element and have optimal approximation property. We first reduce our problem to approximating the trace of the solution space on each edge of the underlying mesh, and then achieve this goal through the singular value decomposition of an oversampling operator. Rigorous error estimates can be obtained through thresholding in constructing the basis functions. Numerical results for several problems with multiple spatial scales and high contrast inclusions are presented to demonstrate the compactness of the local solution space and the capacity of our method in identifying and exploiting this compact structure to achieve computational savings

    A Generalized Multiscale Finite Element Method for the Brinkman Equation

    Full text link
    In this paper we consider the numerical upscaling of the Brinkman equation in the presence of high-contrast permeability fields. We develop and analyze a robust and efficient Generalized Multiscale Finite Element Method (GMsFEM) for the Brinkman model. In the fine grid, we use mixed finite element method with the velocity and pressure being continuous piecewise quadratic and piecewise constant finite element spaces, respectively. Using the GMsFEM framework we construct suitable coarse-scale spaces for the velocity and pressure that yield a robust mixed GMsFEM. We develop a novel approach to construct a coarse approximation for the velocity snapshot space and a robust small offline space for the velocity space. The stability of the mixed GMsFEM and a priori error estimates are derived. A variety of two-dimensional numerical examples are presented to illustrate the effectiveness of the algorithm.Comment: 22 page

    Computational Multiscale Methods for Linear Poroelasticity with High Contrast

    Get PDF
    In this work, we employ the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) to solve the problem of linear heterogeneous poroelasticity with coefficients of high contrast. The proposed method makes use of the idea of energy minimization with suitable constraints in order to generate efficient basis functions for the displacement and the pressure. These basis functions are constructed by solving a class of local auxiliary optimization problems based on eigenfunctions containing local information on the heterogeneity. Techniques of oversampling are adapted to enhance the computational performance. Convergence of first order is shown and illustrated by a number of numerical tests.Comment: 14 pages, 9 figure
    • …
    corecore