3 research outputs found

    AI assisted Malware Analysis: A Course for Next Generation Cybersecurity Workforce

    Full text link
    The use of Artificial Intelligence (AI) and Machine Learning (ML) to solve cybersecurity problems has been gaining traction within industry and academia, in part as a response to widespread malware attacks on critical systems, such as cloud infrastructures, government offices or hospitals, and the vast amounts of data they generate. AI- and ML-assisted cybersecurity offers data-driven automation that could enable security systems to identify and respond to cyber threats in real time. However, there is currently a shortfall of professionals trained in AI and ML for cybersecurity. Here we address the shortfall by developing lab-intensive modules that enable undergraduate and graduate students to gain fundamental and advanced knowledge in applying AI and ML techniques to real-world datasets to learn about Cyber Threat Intelligence (CTI), malware analysis, and classification, among other important topics in cybersecurity. Here we describe six self-contained and adaptive modules in "AI-assisted Malware Analysis." Topics include: (1) CTI and malware attack stages, (2) malware knowledge representation and CTI sharing, (3) malware data collection and feature identification, (4) AI-assisted malware detection, (5) malware classification and attribution, and (6) advanced malware research topics and case studies such as adversarial learning and Advanced Persistent Threat (APT) detection

    Integration of Static and Dynamic Analysis for Malware Family Classification with Composite Neural Network

    Full text link
    Deep learning has been used in the research of malware analysis. Most classification methods use either static analysis features or dynamic analysis features for malware family classification, and rarely combine them as classification features and also no extra effort is spent integrating the two types of features. In this paper, we combine static and dynamic analysis features with deep neural networks for Windows malware classification. We develop several methods to generate static and dynamic analysis features to classify malware in different ways. Given these features, we conduct experiments with composite neural network, showing that the proposed approach performs best with an accuracy of 83.17% on a total of 80 malware families with 4519 malware samples. Additionally, we show that using integrated features for malware family classification outperforms using static features or dynamic features alone. We show how static and dynamic features complement each other for malware classification

    Defense Methods Against Adversarial Examples for Recurrent Neural Networks

    Full text link
    Adversarial examples are known to mislead deep learning models to incorrectly classify them, even in domains where such models achieve state-of-the-art performance. Until recently, research on both attack and defense methods focused on image recognition, primarily using convolutional neural networks (CNNs). In recent years, adversarial example generation methods for recurrent neural networks (RNNs) have been published, demonstrating that RNN classifiers are also vulnerable to such attacks. In this paper, we present a novel defense method, termed sequence squeezing, to make RNN classifiers more robust against such attacks. Our method differs from previous defense methods which were designed only for non-sequence based models. We also implement four additional RNN defense methods inspired by recently published CNN defense methods. We evaluate our methods against state-of-the-art attacks in the cyber security domain where real adversaries (malware developers) exist, but our methods can be applied against other discrete sequence based adversarial attacks, e.g., in the NLP domain. Using our methods we were able to decrease the effectiveness of such attack from 99.9% to 15%.Comment: Submitted as a conference paper to Euro S&P 202
    corecore