5 research outputs found

    Kinematics Based Visual Localization for Skid-Steering Robots: Algorithm and Theory

    Full text link
    To build commercial robots, skid-steering mechanical design is of increased popularity due to its manufacturing simplicity and unique mechanism. However, these also cause significant challenges on software and algorithm design, especially for pose estimation (i.e., determining the robot's rotation and position), which is the prerequisite of autonomous navigation. While the general localization algorithms have been extensively studied in research communities, there are still fundamental problems that need to be resolved for localizing skid-steering robots that change their orientation with a skid. To tackle this problem, we propose a probabilistic sliding-window estimator dedicated to skid-steering robots, using measurements from a monocular camera, the wheel encoders, and optionally an inertial measurement unit (IMU). Specifically, we explicitly model the kinematics of skid-steering robots by both track instantaneous centers of rotation (ICRs) and correction factors, which are capable of compensating for the complexity of track-to-terrain interaction, the imperfectness of mechanical design, terrain conditions and smoothness, and so on. To prevent performance reduction in robots' lifelong missions, the time- and location- varying kinematic parameters are estimated online along with pose estimation states in a tightly-coupled manner. More importantly, we conduct in-depth observability analysis for different sensors and design configurations in this paper, which provides us with theoretical tools in making the correct choice when building real commercial robots. In our experiments, we validate the proposed method by both simulation tests and real-world experiments, which demonstrate that our method outperforms competing methods by wide margins.Comment: 18 pages in tota

    Robust Monocular Visual Odometry for a Ground Vehicle in Undulating Terrain

    No full text
    Here we present a robust method for monocular visual odometry capable of accurate position estimation even when operating in undulating terrain. Our algorithm uses a steering model to separately recover rotation and translation. Robot 3DOF orientation is recovered by minimizing image projection error, while, robot translation is recovered by solving an NP-hard optimization problem through an approximation. The decoupled estimation ensures a low computational cost. The proposed method handles undulating terrain by approximating ground patches as locally flat but not necessarily level, and recovers the inclination angle of the local ground in motion estimation. Also, it can automatically detect when the assumption is violated by analysis of the residuals. If the imaged terrain cannot be sufficiently approximated by locally flat patches, wheel odometry is used to provide robust estimation. Our field experiments show a mean relative error of less than 1%.</p

    Robust Monocular Visual Odometry for a Ground Vehicle in Undulating Terrain

    No full text
    Abstract Here we present a robust method for monocular visual odometry capable of accurate position estimation even when operating in undulating terrain. Our algorithm uses a steering model to separately recover rotation and translation. Robot 3DOF orientation is recovered by minimizing image projection error, while, robot translation is recovered by solving an NP-hard optimization problem through an approximation. The decoupled estimation ensures a low computational cost. The proposed method handles undulating terrain by approximating ground patches as locally flat but not necessarily level, and recovers the inclination angle of the local ground in motion estimation. Also, it can automatically detect when the assumption is violated by analysis of the residuals. If the imaged terrain cannot be sufficiently approximated by locally flat patches, wheel odometry is used to provide robust estimation. Our field experiments show a mean relative error of less than 1%.
    corecore