355,404 research outputs found

    Robust Temporal Logic Model Predictive Control

    Full text link
    Control synthesis from temporal logic specifications has gained popularity in recent years. In this paper, we use a model predictive approach to control discrete time linear systems with additive bounded disturbances subject to constraints given as formulas of signal temporal logic (STL). We introduce a (conservative) computationally efficient framework to synthesize control strategies based on mixed integer programs. The designed controllers satisfy the temporal logic requirements, are robust to all possible realizations of the disturbances, and optimal with respect to a cost function. In case the temporal logic constraint is infeasible, the controller satisfies a relaxed, minimally violating constraint. An illustrative case study is included.Comment: This work has been accepted to appear in the proceedings of 53rd Annual Allerton Conference on Communication, Control and Computing, Urbana-Champaign, IL (2015

    Robust Model Predictive Control via Scenario Optimization

    Full text link
    This paper discusses a novel probabilistic approach for the design of robust model predictive control (MPC) laws for discrete-time linear systems affected by parametric uncertainty and additive disturbances. The proposed technique is based on the iterated solution, at each step, of a finite-horizon optimal control problem (FHOCP) that takes into account a suitable number of randomly extracted scenarios of uncertainty and disturbances, followed by a specific command selection rule implemented in a receding horizon fashion. The scenario FHOCP is always convex, also when the uncertain parameters and disturbance belong to non-convex sets, and irrespective of how the model uncertainty influences the system's matrices. Moreover, the computational complexity of the proposed approach does not depend on the uncertainty/disturbance dimensions, and scales quadratically with the control horizon. The main result in this paper is related to the analysis of the closed loop system under receding-horizon implementation of the scenario FHOCP, and essentially states that the devised control law guarantees constraint satisfaction at each step with some a-priori assigned probability p, while the system's state reaches the target set either asymptotically, or in finite time with probability at least p. The proposed method may be a valid alternative when other existing techniques, either deterministic or stochastic, are not directly usable due to excessive conservatism or to numerical intractability caused by lack of convexity of the robust or chance-constrained optimization problem.Comment: This manuscript is a preprint of a paper accepted for publication in the IEEE Transactions on Automatic Control, with DOI: 10.1109/TAC.2012.2203054, and is subject to IEEE copyright. The copy of record will be available at http://ieeexplore.ieee.or

    Model Predictive Control meets robust Kalman filtering

    Full text link
    Model Predictive Control (MPC) is the principal control technique used in industrial applications. Although it offers distinguishable qualities that make it ideal for industrial applications, it can be questioned its robustness regarding model uncertainties and external noises. In this paper we propose a robust MPC controller that merges the simplicity in the design of MPC with added robustness. In particular, our control system stems from the idea of adding robustness in the prediction phase of the algorithm through a specific robust Kalman filter recently introduced. Notably, the overall result is an algorithm very similar to classic MPC but that also provides the user with the possibility to tune the robustness of the control. To test the ability of the controller to deal with errors in modeling, we consider a servomechanism system characterized by nonlinear dynamics

    Differentiable Robust Model Predictive Control

    Full text link
    Deterministic model predictive control (MPC), while powerful, is often insufficient for effectively controlling autonomous systems in the real-world. Factors such as environmental noise and model error can cause deviations from the expected nominal performance. Robust MPC algorithms aim to bridge this gap between deterministic and uncertain control. However, these methods are often excessively difficult to tune for robustness due to the nonlinear and non-intuitive effects that controller parameters have on performance. To address this challenge, a unifying perspective on differentiable optimization for control is presented, which enables derivation of a general, differentiable tube-based MPC algorithm. The proposed approach facilitates the automatic and real-time tuning of robust controllers in the presence of large uncertainties and disturbances

    Robust Model Predictive Control Design

    Get PDF

    Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    Get PDF
    The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to deal explicitly with plant model uncertainty. In this paper, we present a new approach for robust MPC synthesis which allows explicit incorporation of the description of plant uncertainty in the problem formulation. The uncertainty is expressed both in the time domain and the frequency domain. The goal is to design, at each time step, a state-feedback control law which minimizes a "worst-case" infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques, the problem of minimizing an upper bound on the "worst-case" objective function, subject to input and output constraints, is reduced to a convex optimization involving linear matrix inequalities (LMIs). It is shown that the feasible receding horizon state-feedback control design robustly stabilizes the set of uncertain plants under consideration. Several extensions, such as application to systems with time-delays and problems involving constant set-point tracking, trajectory tracking and disturbance rejection, which follow naturally from our formulation, are discussed. The controller design procedure is illustrated with two examples. Finally, conclusions are presented

    Robust Model Predictive Control for Signal Temporal Logic Synthesis

    Get PDF
    Most automated systems operate in uncertain or adversarial conditions, and have to be capable of reliably reacting to changes in the environment. The focus of this paper is on automatically synthesizing reactive controllers for cyber-physical systems subject to signal temporal logic (STL) specifications. We build on recent work that encodes STL specifications as mixed integer linear constraints on the variables of a discrete-time model of the system and environment dynamics. To obtain a reactive controller, we present solutions to the worst-case model predictive control (MPC) problem using a suite of mixed integer linear programming techniques. We demonstrate the comparative effectiveness of several existing worst-case MPC techniques, when applied to the problem of control subject to temporal logic specifications; our empirical results emphasize the need to develop specialized solutions for this domain

    Robust semi-explicit model predictive control for hybrid automata

    Get PDF
    In this paper we propose an on-line design technique for the target control problem of hybrid automata. First, we compute on-line the shortest path, which has the minimum discrete cost, from an initial state to the given target set. Next, we derive a controller which successfully drives the system from the initial state to the target set while minimizing a cost function. The (robust) model predictive control (MPC) technique is used when the current state is not within a guard set, otherwise the (robust) mixed-integer predictive control (MIPC) technique is employed. An on-line, semi-explicit control algorithm is derived by combining the two techniques and applied on a high-speed and energy-saving control problem of the CPU processing

    Plug-and-Play Model Predictive Control based on robust control invariant sets

    Get PDF
    In this paper we consider a linear system represented by a coupling graph between subsystems and propose a distributed control scheme capable to guarantee asymptotic stability and satisfaction of constraints on system inputs and states. Most importantly, as in Riverso et al., 2012 our design procedure enables plug-and-play (PnP) operations, meaning that (i) the addition or removal of subsystems triggers the design of local controllers associated to successors to the subsystem only and (ii) the synthesis of a local controller for a subsystem requires information only from predecessors of the subsystem and it can be performed using only local computational resources. Our method hinges on local tube MPC controllers based on robust control invariant sets and it advances the PnP design procedure proposed in Riverso et al., 2012 in several directions. Quite notably, using recent results in the computation of robust control invariant sets, we show how critical steps in the design of a local controller can be solved through linear programming. Finally, an application of the proposed control design procedure to frequency control in power networks is presented
    • …
    corecore