23,284 research outputs found

    Robust Linear Regression Analysis - A Greedy Approach

    Full text link
    The task of robust linear estimation in the presence of outliers is of particular importance in signal processing, statistics and machine learning. Although the problem has been stated a few decades ago and solved using classical (considered nowadays) methods, recently it has attracted more attention in the context of sparse modeling, where several notable contributions have been made. In the present manuscript, a new approach is considered in the framework of greedy algorithms. The noise is split into two components: a) the inlier bounded noise and b) the outliers, which are explicitly modeled by employing sparsity arguments. Based on this scheme, a novel efficient algorithm (Greedy Algorithm for Robust Denoising - GARD), is derived. GARD alternates between a least square optimization criterion and an Orthogonal Matching Pursuit (OMP) selection step that identifies the outliers. The case where only outliers are present has been studied separately, where bounds on the \textit{Restricted Isometry Property} guarantee that the recovery of the signal via GARD is exact. Moreover, theoretical results concerning convergence as well as the derivation of error bounds in the case of additional bounded noise are discussed. Finally, we provide extensive simulations, which demonstrate the comparative advantages of the new technique

    Self-Dictionary Sparse Regression for Hyperspectral Unmixing: Greedy Pursuit and Pure Pixel Search are Related

    Full text link
    This paper considers a recently emerged hyperspectral unmixing formulation based on sparse regression of a self-dictionary multiple measurement vector (SD-MMV) model, wherein the measured hyperspectral pixels are used as the dictionary. Operating under the pure pixel assumption, this SD-MMV formalism is special in that it allows simultaneous identification of the endmember spectral signatures and the number of endmembers. Previous SD-MMV studies mainly focus on convex relaxations. In this study, we explore the alternative of greedy pursuit, which generally provides efficient and simple algorithms. In particular, we design a greedy SD-MMV algorithm using simultaneous orthogonal matching pursuit. Intriguingly, the proposed greedy algorithm is shown to be closely related to some existing pure pixel search algorithms, especially, the successive projection algorithm (SPA). Thus, a link between SD-MMV and pure pixel search is revealed. We then perform exact recovery analyses, and prove that the proposed greedy algorithm is robust to noise---including its identification of the (unknown) number of endmembers---under a sufficiently low noise level. The identification performance of the proposed greedy algorithm is demonstrated through both synthetic and real-data experiments

    Multichannel sparse recovery of complex-valued signals using Huber's criterion

    Full text link
    In this paper, we generalize Huber's criterion to multichannel sparse recovery problem of complex-valued measurements where the objective is to find good recovery of jointly sparse unknown signal vectors from the given multiple measurement vectors which are different linear combinations of the same known elementary vectors. This requires careful characterization of robust complex-valued loss functions as well as Huber's criterion function for the multivariate sparse regression problem. We devise a greedy algorithm based on simultaneous normalized iterative hard thresholding (SNIHT) algorithm. Unlike the conventional SNIHT method, our algorithm, referred to as HUB-SNIHT, is robust under heavy-tailed non-Gaussian noise conditions, yet has a negligible performance loss compared to SNIHT under Gaussian noise. Usefulness of the method is illustrated in source localization application with sensor arrays.Comment: To appear in CoSeRa'15 (Pisa, Italy, June 16-19, 2015). arXiv admin note: text overlap with arXiv:1502.0244

    Nonparametric Simultaneous Sparse Recovery: an Application to Source Localization

    Full text link
    We consider multichannel sparse recovery problem where the objective is to find good recovery of jointly sparse unknown signal vectors from the given multiple measurement vectors which are different linear combinations of the same known elementary vectors. Many popular greedy or convex algorithms perform poorly under non-Gaussian heavy-tailed noise conditions or in the face of outliers. In this paper, we propose the usage of mixed β„“p,q\ell_{p,q} norms on data fidelity (residual matrix) term and the conventional β„“0,2\ell_{0,2}-norm constraint on the signal matrix to promote row-sparsity. We devise a greedy pursuit algorithm based on simultaneous normalized iterative hard thresholding (SNIHT) algorithm. Simulation studies highlight the effectiveness of the proposed approaches to cope with different noise environments (i.i.d., row i.i.d, etc) and outliers. Usefulness of the methods are illustrated in source localization application with sensor arrays.Comment: Paper appears in Proc. European Signal Processing Conference (EUSIPCO'15), Nice, France, Aug 31 -- Sep 4, 201

    Computational Methods for Sparse Solution of Linear Inverse Problems

    Get PDF
    The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications
    • …
    corecore