1,008 research outputs found

    Flight Dynamics-based Recovery of a UAV Trajectory using Ground Cameras

    Get PDF
    We propose a new method to estimate the 6-dof trajectory of a flying object such as a quadrotor UAV within a 3D airspace monitored using multiple fixed ground cameras. It is based on a new structure from motion formulation for the 3D reconstruction of a single moving point with known motion dynamics. Our main contribution is a new bundle adjustment procedure which in addition to optimizing the camera poses, regularizes the point trajectory using a prior based on motion dynamics (or specifically flight dynamics). Furthermore, we can infer the underlying control input sent to the UAV's autopilot that determined its flight trajectory. Our method requires neither perfect single-view tracking nor appearance matching across views. For robustness, we allow the tracker to generate multiple detections per frame in each video. The true detections and the data association across videos is estimated using robust multi-view triangulation and subsequently refined during our bundle adjustment procedure. Quantitative evaluation on simulated data and experiments on real videos from indoor and outdoor scenes demonstrates the effectiveness of our method

    Object Tracking and Mensuration in Surveillance Videos

    Get PDF
    This thesis focuses on tracking and mensuration in surveillance videos. The first part of the thesis discusses several object tracking approaches based on the different properties of tracking targets. For airborne videos, where the targets are usually small and with low resolutions, an approach of building motion models for foreground/background proposed in which the foreground target is simplified as a rigid object. For relatively high resolution targets, the non-rigid models are applied. An active contour-based algorithm has been introduced. The algorithm is based on decomposing the tracking into three parts: estimate the affine transform parameters between successive frames using particle filters; detect the contour deformation using a probabilistic deformation map, and regulate the deformation by projecting the updated model onto a trained shape subspace. The active appearance Markov chain (AAMC). It integrates a statistical model of shape, appearance and motion. In the AAMC model, a Markov chain represents the switching of motion phases (poses), and several pairwise active appearance model (P-AAM) components characterize the shape, appearance and motion information for different motion phases. The second part of the thesis covers video mensuration, in which we have proposed a heightmeasuring algorithm with less human supervision, more flexibility and improved robustness. From videos acquired by an uncalibrated stationary camera, we first recover the vanishing line and the vertical point of the scene. We then apply a single view mensuration algorithm to each of the frames to obtain height measurements. Finally, using the LMedS as the cost function and the Robbins-Monro stochastic approximation (RMSA) technique to obtain the optimal estimate

    Identification and Classification of Moving Vehicles on Road

    Get PDF
    It is important to know the road traffic density real time especially in cities for signal control and effective traffic management. In recent years, video monitoring and surveillance systems have been widely used in traffic management. Hence, traffic density estimation and vehicle classification can be achieved using video monitoring systems. The image sequences for traffic scenes are recorded by a stationary camera. The method is based on the establishment of correspondences between regions and vehicles, as the vehicles move through the image sequence. Background subtraction is used which improves the adaptive background mixture model and makes the system learn faster and more accurately, as well as adapt effectively to changing environments. The resulting system robustly identifies vehicles, rejecting background and tracks vehicles over a specific period of time. Once the (object) vehicle is tracked, the attributes of the vehicle like width, length, perimeter, area etc are extracted by image process feature extraction techniques. These features will be used in classification of vehicle as big or small using neural networks classification technique of data mining. In proposed system we use LABVIEW and Vision assistant module for image processing and feature extraction.  A feed-forward neural network is trained to classify vehicles using data mining WEKA toolbox. The system will solve major problems of human effort and errors in traffic monitoring and time consumption in conducting survey and analysis of data. The project will benefit to reduce cost of traffic monitoring system and complete automation of traffic monitoring system. Keywords: Image processing, Feature extraction, Segmentation, Threshold, Filter, Morphology, Blob, LABVIEW, NI, VI, Vision assistant, Data mining, Machine learning, Neural network, Back propagation, Multi layer perception, Classification, WEK

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    Single Image Human Proxemics Estimation for Visual Social Distancing

    Full text link
    In this work, we address the problem of estimating the so-called "Social Distancing" given a single uncalibrated image in unconstrained scenarios. Our approach proposes a semi-automatic solution to approximate the homography matrix between the scene ground and image plane. With the estimated homography, we then leverage an off-the-shelf pose detector to detect body poses on the image and to reason upon their inter-personal distances using the length of their body-parts. Inter-personal distances are further locally inspected to detect possible violations of the social distancing rules. We validate our proposed method quantitatively and qualitatively against baselines on public domain datasets for which we provided groundtruth on inter-personal distances. Besides, we demonstrate the application of our method deployed in a real testing scenario where statistics on the inter-personal distances are currently used to improve the safety in a critical environment.Comment: Paper accepted at WACV 2021 conferenc

    Truck height determination using digital video

    Get PDF
    Over-height trucks are not only a hazard to the over-height trucks themselves, but they pose a threat to the bridges they come into contact with, and most importantly the other drivers on the road way when a collision takes place with a low clearance structure. Therefore, there is a need for an over-height detection system that is affordable yet also reliable. At this time there exist over-height detection systems using laser and infrared beam devices however, they are expensive. This high cost makes it impossible for Department of Transportations across the nation to implement these systems at all low-clearance headroom roadways. In this research a machine vision based system is proposed to detect the height of trucks and provide a warning for over-height vehicles. The height determination will be completed using line detection and blob tracking; these two methods will be overlapped where an upper point of the truck can be compared to a lower point on the ground. These 2D coordinates will then be translated into 3D world coordinates that will provide an approximation of the truck height. If the truck is over the set height then a warning will sound. The accuracy of the test proves that the method is a reliable method of height determination, achieving a 96.59% accuracy rate for measured trucks. The method does have an error rate of 3.3%. The merit of this work is the creation of an automatic image based method which can provide height determination of trucks and is a low cost alternative to the current expensive laser and infrared detection systems.MSCommittee Chair: Brilakis, Ioannis ; Committee Member: Hunter, Michael; Committee Member: Laval, Jorg
    • …
    corecore