1,987 research outputs found

    Robust Online Covariance and Sparse Precision Estimation Under Arbitrary Data Corruption

    Full text link
    Gaussian graphical models are widely used to represent correlations among entities but remain vulnerable to data corruption. In this work, we introduce a modified trimmed-inner-product algorithm to robustly estimate the covariance in an online scenario even in the presence of arbitrary and adversarial data attacks. At each time step, data points, drawn nominally independently and identically from a multivariate Gaussian distribution, arrive. However, a certain fraction of these points may have been arbitrarily corrupted. We propose an online algorithm to estimate the sparse inverse covariance (i.e., precision) matrix despite this corruption. We provide the error-bound and convergence properties of the estimates to the true precision matrix under our algorithms.Comment: 9 pages, 4 figures, 62nd IEEE Conference on Decision and Control (CDC

    Robust Regression via Hard Thresholding

    Full text link
    We study the problem of Robust Least Squares Regression (RLSR) where several response variables can be adversarially corrupted. More specifically, for a data matrix X \in R^{p x n} and an underlying model w*, the response vector is generated as y = X'w* + b where b \in R^n is the corruption vector supported over at most C.n coordinates. Existing exact recovery results for RLSR focus solely on L1-penalty based convex formulations and impose relatively strict model assumptions such as requiring the corruptions b to be selected independently of X. In this work, we study a simple hard-thresholding algorithm called TORRENT which, under mild conditions on X, can recover w* exactly even if b corrupts the response variables in an adversarial manner, i.e. both the support and entries of b are selected adversarially after observing X and w*. Our results hold under deterministic assumptions which are satisfied if X is sampled from any sub-Gaussian distribution. Finally unlike existing results that apply only to a fixed w*, generated independently of X, our results are universal and hold for any w* \in R^p. Next, we propose gradient descent-based extensions of TORRENT that can scale efficiently to large scale problems, such as high dimensional sparse recovery and prove similar recovery guarantees for these extensions. Empirically we find TORRENT, and more so its extensions, offering significantly faster recovery than the state-of-the-art L1 solvers. For instance, even on moderate-sized datasets (with p = 50K) with around 40% corrupted responses, a variant of our proposed method called TORRENT-HYB is more than 20x faster than the best L1 solver.Comment: 24 pages, 3 figure
    • …
    corecore