3 research outputs found

    Underdetermined Separation of Speech Mixture Based on Sparse Bayesian Learning

    Get PDF
    This paper describes a novel algorithm for underdetermined speech separation problem based on compressed sensing which is an emerging technique for efficient data reconstruction. The proposed algorithm consists of two steps. The unknown mixing matrix is firstly estimated from the speech mixtures in the transform domain by using K-means clustering algorithm. In the second step, the speech sources are recovered based on an autocalibration sparse Bayesian learning algorithm for speech signal. Numerical experiments including the comparison with other sparse representation approaches are provided to show the achieved performance improvement

    Robust frequency-hopping spectrum estimation based on sparse bayesian method

    No full text
    This paper considers the problem of estimating multiple frequency hopping signals with unknown hopping pattern. By segmenting the received signals into overlapped measurements and leveraging the property that frequency content at each time instant is intrinsically parsimonious, a sparsity-inspired high-resolution time-frequency representation (TFR) is developed to achieve robust estimation. Inspired by the sparse Bayesian learning algorithm, the problem is formulated hierarchically to induce sparsity. In addition to the sparsity, the hopping pattern is exploited via temporal-aware clustering by exerting a dependent Dirichlet process prior over the latent parametric space. The estimation accuracy of the parameters can be greatly improved by this particular information-sharing scheme and sharp boundary of the hopping time estimation is manifested. Moreover, the proposed algorithm is further extended to multi-channel cases, where task-relation is utilized to obtain robust clustering of the latent parameters for better estimation performance. Since the problem is formulated in a full Bayesian framework, labor-intensive parameter tuning process can be avoided. Another superiority of the approach is that high-resolution instantaneous frequency estimation can be directly obtained without further refinement of the TFR. Results of numerical experiments show that the proposed algorithm can achieve superior performance particularly in low signal-to-noise ratio scenarios compared with other recently reported ones.Accepted versio
    corecore