40,306 research outputs found

    Fault estimation and active fault tolerant control for linear parameter varying descriptor systems

    Get PDF
    Starting with the baseline controller design, this paper proposes an integrated approach of active fault tolerant control based on proportional derivative extended state observer (PDESO) for linear parameter varying descriptor systems. The PDESO can simultaneously provide the estimates of the system states, sensor faults, and actuator faults. The Lâ‚‚ robust performance of the closed-loop system to bounded exogenous disturbance and bounded uncertainty is achieved by a two-step design procedure adapted from the traditional observer-based controller design. Furthermore, an LMI pole-placement region and the Lâ‚‚ robustness performance are combined into a multiobjective formulation by suitably combing the appropriate LMI descriptions. A parameter-varying system example is given to illustrate the design procedure and the validity of the proposed integrated design approach

    A Comparison of LPV Gain Scheduling and Control Contraction Metrics for Nonlinear Control

    Full text link
    Gain-scheduled control based on linear parameter-varying (LPV) models derived from local linearizations is a widespread nonlinear technique for tracking time-varying setpoints. Recently, a nonlinear control scheme based on Control Contraction Metrics (CCMs) has been developed to track arbitrary admissible trajectories. This paper presents a comparison study of these two approaches. We show that the CCM based approach is an extended gain-scheduled control scheme which achieves global reference-independent stability and performance through an exact control realization which integrates a series of local LPV controllers on a particular path between the current and reference states.Comment: IFAC LPVS 201

    Optimal Multiuser Scheduling Schemes for Simultaneous Wireless Information and Power Transfer

    Full text link
    In this paper, we study the downlink multiuser scheduling problem for systems with simultaneous wireless information and power transfer (SWIPT). We design optimal scheduling algorithms that maximize the long-term average system throughput under different fairness requirements, such as proportional fairness and equal throughput fairness. In particular, the algorithm designs are formulated as non-convex optimization problems which take into account the minimum required average sum harvested energy in the system. The problems are solved by using convex optimization techniques and the proposed optimization framework reveals the tradeoff between the long-term average system throughput and the sum harvested energy in multiuser systems with fairness constraints. Simulation results demonstrate that substantial performance gains can be achieved by the proposed optimization framework compared to existing suboptimal scheduling algorithms from the literature.Comment: Accepted for presentation at the European Signal Processing Conference 201
    • …
    corecore