5,145 research outputs found

    Uncertainty handling in named entity extraction and disambiguation for informal text

    Get PDF
    Social media content represents a large portion of all textual content appearing on the Internet. These streams of user generated content (UGC) provide an opportunity and challenge for media analysts to analyze huge amount of new data and use them to infer and reason with new information. A main challenge of natural language is its ambiguity and vagueness. To automatically resolve ambiguity, the grammatical structure of sentences is used. However, when we move to informal language widely used in social media, the language becomes more ambiguous and thus more challenging for automatic understanding.\ud Information Extraction (IE) is the research field that enables the use of unstructured text in a structured way. Named Entity Extraction (NEE) is a sub task of IE that aims to locate phrases (mentions) in the text that represent names of entities such as persons, organizations or locations regardless of their type. Named Entity Disambiguation (NED) is the task of determining which correct person, place, event, etc. is referred to by a mention.\ud The goal of this paper is to provide an overview on some approaches that mimic the human way of recognition and disambiguation of named entities especially for domains that lack formal sentence structure. The proposed methods open the doors for more sophisticated applications based on usersā€™ contributions on social media. We propose a robust combined framework for NEE and NED in semi-formal and informal text. The achieved robustness has been proven to be valid across languages and domains and to be independent of the selected extraction and disambiguation techniques. It is also shown to be robust against the informality of the used language. We have discovered a reinforcement effect and exploited it a technique that improves extraction quality by feeding back disambiguation results. We present a method of handling the uncertainty involved in extraction to improve the disambiguation results

    Graph Based Disambiguation of Named Entities using Linked Data

    Get PDF
    Identifying entities such as people, organizations, songs, or places in natural language texts is needful for semantic search, machine translation, and information extraction. A key challenge is the ambiguity of entity names, requiring robust methods to disambiguate names to the entities registered in a knowledge base. Several approaches aim to tackle this problem, they still achieve poor accuracy. We address this drawback by presenting a novel knowledge-base-agnostic approach for named entity disambiguation. Our approach includes the HITS algorithm combined with label expansion strategies and string similarity measure like the n-gram similarity. Based on this combination, we can efficiently detect the correct URIs for a given set of named entities within an input text

    Pair-Linking for Collective Entity Disambiguation: Two Could Be Better Than All

    Full text link
    Collective entity disambiguation aims to jointly resolve multiple mentions by linking them to their associated entities in a knowledge base. Previous works are primarily based on the underlying assumption that entities within the same document are highly related. However, the extend to which these mentioned entities are actually connected in reality is rarely studied and therefore raises interesting research questions. For the first time, we show that the semantic relationships between the mentioned entities are in fact less dense than expected. This could be attributed to several reasons such as noise, data sparsity and knowledge base incompleteness. As a remedy, we introduce MINTREE, a new tree-based objective for the entity disambiguation problem. The key intuition behind MINTREE is the concept of coherence relaxation which utilizes the weight of a minimum spanning tree to measure the coherence between entities. Based on this new objective, we design a novel entity disambiguation algorithms which we call Pair-Linking. Instead of considering all the given mentions, Pair-Linking iteratively selects a pair with the highest confidence at each step for decision making. Via extensive experiments, we show that our approach is not only more accurate but also surprisingly faster than many state-of-the-art collective linking algorithms

    Neural Collective Entity Linking

    Full text link
    Entity Linking aims to link entity mentions in texts to knowledge bases, and neural models have achieved recent success in this task. However, most existing methods rely on local contexts to resolve entities independently, which may usually fail due to the data sparsity of local information. To address this issue, we propose a novel neural model for collective entity linking, named as NCEL. NCEL applies Graph Convolutional Network to integrate both local contextual features and global coherence information for entity linking. To improve the computation efficiency, we approximately perform graph convolution on a subgraph of adjacent entity mentions instead of those in the entire text. We further introduce an attention scheme to improve the robustness of NCEL to data noise and train the model on Wikipedia hyperlinks to avoid overfitting and domain bias. In experiments, we evaluate NCEL on five publicly available datasets to verify the linking performance as well as generalization ability. We also conduct an extensive analysis of time complexity, the impact of key modules, and qualitative results, which demonstrate the effectiveness and efficiency of our proposed method.Comment: 12 pages, 3 figures, COLING201

    Unsupervised improvement of named entity extraction in short informal context using disambiguation clues

    Get PDF
    Short context messages (like tweets and SMSā€™s) are a potentially rich source of continuously and instantly updated information. Shortness and informality of such messages are challenges for Natural Language Processing tasks. Most efforts done in this direction rely on machine learning techniques which are expensive in terms of data collection and training. In this paper we present an unsupervised Semantic Web-driven approach to improve the extraction process by using clues from the disambiguation process. For extraction we used a simple Knowledge-Base matching technique combined with a clustering-based approach for disambiguation. Experimental results on a self-collected set of tweets (as an example of short context messages) show improvement in extraction results when using unsupervised feedback from the disambiguation process

    Named Entity Extraction and Disambiguation: The Reinforcement Effect.

    Get PDF
    Named entity extraction and disambiguation have received much attention in recent years. Typical fields addressing these topics are information retrieval, natural language processing, and semantic web. Although these topics are highly dependent, almost no existing works examine this dependency. It is the aim of this paper to examine the dependency and show how one affects the other, and vice versa. We conducted experiments with a set of descriptions of holiday homes with the aim to extract and disambiguate toponyms as a representative example of named entities. We experimented with three approaches for disambiguation with the purpose to infer the country of the holiday home. We examined how the effectiveness of extraction influences the effectiveness of disambiguation, and reciprocally, how filtering out ambiguous names (an activity that depends on the disambiguation process) improves the effectiveness of extraction. Since this, in turn, may improve the effectiveness of disambiguation again, it shows that extraction and disambiguation may reinforce each other.\u
    • ā€¦
    corecore