1 research outputs found

    Robust Control Of Power Networks Under Worst-Case Load And Renewables Uncertainty

    No full text
    Demand disturbances, deviations in wind-speed, and solar irradiance, and uncertainty in renewable energy generation are some of the most critical challenges that impede stable operation of power grids. The objective of this paper is to derive robust control laws that steer an uncertain multimachine power network to a region of the grid\u27s operating point. A fourth-order synchronous generator model is used, and the power-flow integrated network dynamics under uncertainty are derived. Then, feedback control law is obtained guaranteeing resilience against worst-case uncertainty in demand and renew-ables generation. The control laws are then applied to the nonlinear differential algebraic model of a power network. Results illustrate the control laws succeed in curbing high-magnitude disturbances from loads and renewable energy sources with minimal impact on the grid\u27s frequency and voltage
    corecore