2 research outputs found

    A Novel Zero-Sequence Current Elimination PWM Scheme for an Open-Winding PMSM With Common DC Bus

    Get PDF
    This paper introduces a novel pulse width modulation (PWM) scheme for an OW-PMSM driven by dual two-level three-phase inverter with common dc bus which can effectively deal with the inherent zero-sequence current (ZSC) problem. Based on conventional symmetrical unipolar double frequency SPWM scheme with appropriate phase-shift, the common mode voltage (CMV) of two inverters can keep the same and cancel out each other to eliminate the modulated zero sequence voltage (ZSV) disturbance source. In this case, the double frequency effect can be retained to reduce the ac side current ripple and suppress both the corresponding motor vibration and acoustic noise which is advantageous to improve the synthetic performance of motor. The DC bus voltage utilization of the novel PWM scheme is proved to reach the maximum value as same as the conventional modulated ZSV elimination scheme. Meanwhile, a zero-sequence controller is designed to suppress ZSC by further adjusting the two CMVs to counteract other zero-sequence disturbance sources. To verify the analysis, the proposed PWM technique associated with the control method is implemented in an OW-PMSM experimental setup to validate the superiority of proposed method

    Research and Implement of PMSM Regenerative Braking Control for Electric Vehicle

    Get PDF
    As the society pays more and more attention to the environment pollution and energy crisis, the electric vehicle (EV) development also entered in a new era. With the development of motor speed control technology and the improvement of motor performance, although the dynamic performance and economical cost of EVs are both better than the internal-combustion engine vehicle (ICEV), the driving range limit and charging station distribution are two major problems which limit the popularization of EVs. In order to extend driving range for EVs, regenerative braking (RB) emerges which is able to recover energy during the braking process to improve the energy efficiency. This thesis aims to investigate the RB based pure electric braking system and its implementation. There are many forms of RB system such as fully electrified braking system and blended braking system (BBS) which is equipped both electric RB system and hydraulic braking (HB) system. In this thesis the main research objective is the RB based fully electrified braking system, however, RB system cannot satisfy all braking situation only by itself. Because the regenerating electromagnetic torque may be too small to meet the braking intention of the driver when the vehicle speed is very low and the regenerating electromagnetic torque may be not enough to stop the vehicle as soon as possible in the case of emergency braking. So, in order to ensure braking safety and braking performance, braking torque should be provided with different forms regarding different braking situation and different braking intention. In this thesis, braking torque is classified into three types. First one is normal reverse current braking when the vehicle speed is too low to have enough RB torque. Second one is RB torque which could recover kinetic energy by regenerating electricity and collecting electric energy into battery packs. The last braking situation is emergency where the braking torque is provided by motor plugging braking based on the optimal slip ratio braking control strategy. Considering two indicators of the RB system which are regenerative efficiency and braking safety, a trade-off point should be found and the corresponding control strategy should be designed. In this thesis, the maximum regenerative efficiency is obtained by a braking torque distribution strategy between front wheel and rear wheel based on a maximum available RB torque estimation method and ECE-R13 regulation. And the emergency braking performance is ensured by a novel fractional-order integral sliding mode control (FOISMC) and numerical simulations show that the control performance is better than the conventional sliding mode controller
    corecore