438 research outputs found

    A review of laser scanning for geological and geotechnical applications in underground mining

    Full text link
    Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment. Although there are several published articles on laser scanning, there is a need to review them in the context of underground mining applications. To this end, a holistic review of laser scanning is presented including progress in 3D scanning systems, data capture/processing techniques and primary applications in underground mines. Laser scanning technology has advanced significantly in terms of mobility and mapping, but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency, dynamics, and environmental influences such as dust and water. Studies suggest that laser scanning has matured over the years for change detection, clearance measurements and structure mapping applications. However, there is scope for improvements in lithology identification, surface parameter measurements, logistic tracking and autonomous navigation. Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer, geodetic networking and processing capacity remain limiting factors. Nevertheless, laser scanners are becoming an integral part of mine automation thanks to their affordability, accuracy and mobility, which should support their widespread usage in years to come

    Robot-assisted smart firefighting and interdisciplinary perspectives

    Get PDF
    Urbanization and changes in modern infrastructure have introduced new challenges to current firefighting practices. The current manual operations and training including fire investigation, hazardous chemicals detection, fire and rescue are insufficient to protect the firefighter's safety and life. The firefighting and rescue functions of the existing equipment and apparatus and their dexterity are limited, particularly in the harsh firefighting environments. It is well-established that data and informatics are key factors for efficient and smart firefighting operation. This paper provides a review on the robot-assisted firefighting systems with interdisciplinary perspectives to identify the needs, requirements, challenges as well as future trends to facilitate smart and efficient operations. The needs and challenges of robot-assisted firefighting systems are firstly investigated and identified. Subsequently, prevailing firefighting robotic platforms in literature as well as in practices are elaborately scrutinized and discussed, followed by investigation of localization and navigation support methods. Finally, conclusions and future trends outlook are provided

    2012 Alabama Lunabotics Systems Engineering Paper

    Get PDF
    Excavation will hold a key role for future lunar missions. NASA has stated that "advances in lunar regolith mining have the potential to significantly contribute to our nation's space vision and NASA space exploration operations." [1]. The Lunabotics Mining Competition is an event hosted by NASA that is meant to encourage "the development of innovative lunar excavation concepts from universities which may result in clever ideas and solutions which could be applied to an actual lunar excavation device or payload." [2]. Teams entering the competition must "design and build a remote controlled or autonomous excavator, called a lunabot, that can collect and deposit a minimum of 10 kilograms of lunar simulant within 10 minutes." [2]. While excavation will play an important part in lunar missions, there will still be many other tasks that would benefit from robotic assistance. An excavator might not be as well suited for these tasks as other types of robots might be. For example a lightweight rover would do well with reconnaissance, and a mobile gripper arm would be fit for manipulation, while an excavator would be comparatively clumsy and slow in both cases. Even within the realm of excavation it would be beneficial to have different types of excavators for different tasks, as there are on Earth. The Alabama Lunabotics Team at the University of Alabama has made it their goal to not only design and build a robot that could compete in the Lunabotics Mining Competition, but would also be a multipurpose tool for future NASA missions. The 2010-2011 resulting robot was named the Modular Omnidirectional Lunar Excavator (MOLE). Using the Systems Engineering process and building off of two years of Lunabotics experience, the 20ll-2012 Alabama Lunabotics team (Team NASACAR) has improved the MOLE 1.0 design and optimized it for the 2012 Lunabotics Competition rules [I]. A CAD model of MOLE 2.0 can be seen below in Fig. 1

    Road Surface Feature Extraction and Reconstruction of Laser Point Clouds for Urban Environment

    Get PDF
    Automakers are developing end-to-end three-dimensional (3D) mapping system for Advanced Driver Assistance Systems (ADAS) and autonomous vehicles (AVs). Using geomatics, artificial intelligence, and SLAM (Simultaneous Localization and Mapping) systems to handle all stages of map creation, sensor calibration and alignment. It is crucial to have a system highly accurate and efficient as it is an essential part of vehicle controls. Such mapping requires significant resources to acquire geographic information (GIS and GPS), optical laser and radar spectroscopy, Lidar, and 3D modeling applications in order to extract roadway features (e.g., lane markings, traffic signs, road-edges) detailed enough to construct a “base map”. To keep this map current, it is necessary to update changes due to occurring events such as construction changes, traffic patterns, or growth of vegetation. The information of the road play a very important factor in road traffic safety and it is essential for for guiding autonomous vehicles (AVs), and prediction of upcoming road situations within AVs. The data size of the map is extensive due to the level of information provided with different sensor modalities for that reason a data optimization and extraction from three-dimensional (3D) mobile laser scanning (MLS) point clouds is presented in this thesis. The research shows the proposed hybrid filter configuration together with the dynamic developed mechanism provides significant reduction of the point cloud data with reduced computational or size constraints. The results obtained in this work are proven by a real-world system

    optimización da planificación de adquisición de datos LIDAR cara ó modelado 3D de interiores

    Get PDF
    The main objective of this doctoral thesis is the design, validation and implementation of methodologies that allow the geometric and topological modelling of navigable spaces, whether inside buildings or urban environments, to be integrated into three-dimensional geographic information systems (GIS-3D). The input data of this work will consist mainly of point clouds (which can be classified) acquired by LiDAR systems both indoors and outdoors. In addition, the use of BIM infrastructure models and cadastral maps is proposed depending on their availability. Point clouds provide a large amount of environmental information with high accuracy compared to data offered by other acquisition technologies. However, the lack of data structure and volume requires a great deal of processing effort. For this reason, the first step is to structure the data by dividing the input cloud into simpler entities that facilitate subsequent processes. For this first division, the physical elements present in the cloud will be considered, since they can be walls in the case of interior environments or kerbs in the case of exteriors. In order to generate navigation routes adapted to different mobile agents, the next objective will try to establish a semantic subdivision of space according to the functionalities of space. In the case of internal environments, it is possible to use BIM models to evaluate the results and the use of cadastral maps that support the division of the urban environment. Once the navigable space is divided, the design of topologically coherent navigation networks will be parameterized both geometrically and topologically. For this purpose, several spatial discretization techniques, such as 3D tessellations, will be studied to facilitate the establishment of topological relationships, adjacency, connectivity and inclusion between subspaces. Based on the geometric characterization and the topological relations established in the previous phase, the creation of three-dimensional navigation networks with multimodal support will be addressed and different levels of detail will be considered according to the mobility specifications of each agent and its purpose. Finally, the possibility of integrating the networks generated in a GIS-3D visualization system will be considered. For the correct visualization, the level of detail can be adjusted according to geometry and semantics. Aspects such as the type of user or transport, mobility, rights of access to spaces, etc. They must be considered at all times.El objetivo principal de esta tesis doctoral es el diseño, la validación y la implementación de metodologías que permitan el modelado geométrico y topológico de espacios navegables, ya sea de interiores de edificios o entornos urbanos, para integrarse en sistemas de información geográfica tridimensional (SIG). -3D). Los datos de partida de este trabajo consistirán principalmente en nubes de puntos (que pueden estar clasificados) adquiridas por sistemas LiDAR tanto en interiores como en exteriores. Además, se propone el uso de modelos BIM de infraestructuras y mapas catastrales en función de su disponibilidad. Las nubes de puntos proporcionan una gran cantidad de información del entorno con gran precisión con respecto a los datos ofrecidos por otras tecnologías de adquisición. Sin embargo, la falta de estructura de datos y su volumen requiere un gran esfuerzo de procesamiento. Por este motivo, el primer paso que se debe realizar consiste en estructurar los datos dividiendo la nube de entrada en entidades más simples que facilitan los procesos posteriores. Para esta primera división se considerarán los elementos físicos presentes en la nube, ya que pueden ser paredes en el caso de entornos interiores o bordillos en el caso de los exteriores. Con el propósito de generar rutas de navegación adaptadas a diferentes agentes móviles, el próximo objetivo intentará establecer una subdivisión semántica del espacio de acuerdo con las funcionalidades del espacio. En el caso de entornos internos, es posible utilizar modelos BIM para evaluar los resultados y el uso de mapas catastrales que sirven de apoyo en la división del entorno urbano. Una vez que se divide el espacio navegable, se parametrizará tanto geométrica como topológicamente al diseño de redes de navegación topológicamente coherentes. Para este propósito, se estudiarán varias técnicas de discretización espacial, como las teselaciones 3D, para facilitar el establecimiento de relaciones topológicas, la adyacencia, la conectividad y la inclusión entre subespacios. A partir de la caracterización geométrica y las relaciones topológicas establecidas en la fase anterior, se abordará la creación de redes de navegación tridimensionales con soporte multimodal y se considerarán diversos niveles de detalle según las especificaciones de movilidad de cada agente y su propósito. Finalmente, se contemplará la posibilidad de integrar las redes generadas en un sistema de visualización tridimensional 3D SIG 3D. Para la correcta visualización, el nivel de detalle se puede ajustar en función de la geometría y la semántica. Aspectos como el tipo de usuario o transporte, movilidad, derechos de acceso a espacios, etc. Deben ser considerados en todo momento.O obxectivo principal desta tese doutoral é o deseño, validación e implementación de metodoloxías que permitan o modelado xeométrico e topolóxico de espazos navegables, ben sexa de interiores de edificios ou de entornos urbanos, ca fin de seren integrados en Sistemas de Información Xeográfica tridimensionais (SIX-3D). Os datos de partida deste traballo constarán principalmente de nubes de puntos (que poden estar clasificadas) adquiridas por sistemas LiDAR tanto en interiores como en exteriores. Ademáis plantease o uso de modelos BIM de infraestruturas e mapas catastrais dependendo da súa dispoñibilidade. As nubes de puntos proporcionan unha gran cantidade de información do entorno cunha gran precisión respecto os datos que ofrecen outras tecnoloxías de adquisición. Sen embargo, a falta de estrutura dos datos e a seu volume esixe un amplo esforzo de procesado. Por este motivo o primeiro paso a levar a cabo consiste nunha estruturación dos datos mediante a división da nube de entrada en entidades máis sinxelas que faciliten os procesos posteriores. Para esta primeira división consideraranse elementos físicos presentes na nube como poden ser paredes no caso de entornos interiores ou bordillos no caso de exteriores. Coa finalidade de xerar rutas de navegación adaptadas a distintos axentes móbiles, o seguinte obxectivo tratará de establecer unha subdivisión semántica do espazo de acordo as funcionalidades do espazo. No caso de entornos interiores plantease a posibilidade de empregar modelos BIM para avaliar os resultados e o uso de mapas catastrais que sirvan de apoio na división do entorno urbano. Unha vez divido o espazo navigable parametrizarase tanto xeométricamente como topolóxicamene de cara ao deseño de redes de navegación topolóxicamente coherentes. Para este fin estudaranse varias técnicas de discretización de espazos como como son as teselacións 3D co obxectivo de facilitar establecer relacións topolóxicas, de adxacencia, conectividade e inclusión entre subespazos. A partir da caracterización xeométrica e das relación topolóxicas establecidas na fase previa abordarase a creación de redes de navegación tridimensionais con soporte multi-modal e considerando varios niveis de detalle de acordo as especificacións de mobilidade de cada axente e a súa finalidade. Finalmente comtemplarase a posibilidade de integrar as redes xeradas nun sistema SIX 3D visualización tridimensional. Para a correcta visualización o nivel de detalle poderá axustarse en base a xeometría e a semántica. Aspectos como o tipo de usuario ou transporte, mobilidade, dereitos de acceso a espazos, etc. deberán ser considerados en todo momento

    Robot-Enabled Construction Assembly with Automated Sequence Planning based on ChatGPT: RoboGPT

    Full text link
    Robot-based assembly in construction has emerged as a promising solution to address numerous challenges such as increasing costs, labor shortages, and the demand for safe and efficient construction processes. One of the main obstacles in realizing the full potential of these robotic systems is the need for effective and efficient sequence planning for construction tasks. Current approaches, including mathematical and heuristic techniques or machine learning methods, face limitations in their adaptability and scalability to dynamic construction environments. To expand the ability of the current robot system in sequential understanding, this paper introduces RoboGPT, a novel system that leverages the advanced reasoning capabilities of ChatGPT, a large language model, for automated sequence planning in robot-based assembly applied to construction tasks. The proposed system adapts ChatGPT for construction sequence planning and demonstrate its feasibility and effectiveness through experimental evaluation including Two case studies and 80 trials about real construction tasks. The results show that RoboGPT-driven robots can handle complex construction operations and adapt to changes on the fly. This paper contributes to the ongoing efforts to enhance the capabilities and performance of robot-based assembly systems in the construction industry, and it paves the way for further integration of large language model technologies in the field of construction robotics.Comment: 14 pages, 20 figures, submitted to IEEE Acces

    Three-Dimensional Reconstruction and Modeling Using Low-Precision Vision Sensors for Automation and Robotics Applications in Construction

    Full text link
    Automation and robotics in construction (ARC) has the potential to assist in the performance of several mundane, repetitive, or dangerous construction tasks autonomously or under the supervision of human workers, and perform effective site and resource monitoring to stimulate productivity growth and facilitate safety management. When using ARC technologies, three-dimensional (3D) reconstruction is a primary requirement for perceiving and modeling the environment to generate 3D workplace models for various applications. Previous work in ARC has predominantly utilized 3D data captured from high-fidelity and expensive laser scanners for data collection and processing while paying little attention of 3D reconstruction and modeling using low-precision vision sensors, particularly for indoor ARC applications. This dissertation explores 3D reconstruction and modeling for ARC applications using low-precision vision sensors for both outdoor and indoor applications. First, to handle occlusion for cluttered environments, a joint point cloud completion and surface relation inference framework using red-green-blue and depth (RGB-D) sensors (e.g., Microsoft® Kinect) is proposed to obtain complete 3D models and the surface relations. Then, to explore the integration of prior domain knowledge, a user-guided dimensional analysis method using RGB-D sensors is designed to interactively obtain dimensional information for indoor building environments. In order to allow deployed ARC systems to be aware of or monitor humans in the environment, a real-time human tracking method using a single RGB-D sensor is designed to track specific individuals under various illumination conditions in work environments. Finally, this research also investigates the utilization of aerially collected video images for modeling ongoing excavations and automated geotechnical hazards detection and monitoring. The efficacy of the researched methods has been evaluated and validated through several experiments. Specifically, the joint point cloud completion and surface relation inference method is demonstrated to be able to recover all surface connectivity relations, double the point cloud size by adding points of which more than 87% are correct, and thus create high-quality complete 3D models of the work environment. The user-guided dimensional analysis method can provide legitimate user guidance for obtaining dimensions of interest. The average relative errors for the example scenes are less than 7% while the absolute errors less than 36mm. The designed human worker tracking method can successfully track a specific individual in real-time with high detection accuracy. The excavation slope stability monitoring framework allows convenient data collection and efficient data processing for real-time job site monitoring. The designed geotechnical hazard detection and mapping methods enable automated identification of landslides using only aerial video images collected using drones.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138626/1/yongxiao_1.pd

    Simultaneous localization and mapping for inspection robots in water and sewer pipe networks: a review

    Get PDF
    At the present time, water and sewer pipe networks are predominantly inspected manually. In the near future, smart cities will perform intelligent autonomous monitoring of buried pipe networks, using teams of small robots. These robots, equipped with all necessary computational facilities and sensors (optical, acoustic, inertial, thermal, pressure and others) will be able to inspect pipes whilst navigating, selflocalising and communicating information about the pipe condition and faults such as leaks or blockages to human operators for monitoring and decision support. The predominantly manual inspection of pipe networks will be replaced with teams of autonomous inspection robots that can operate for long periods of time over a large spatial scale. Reliable autonomous navigation and reporting of faults at this scale requires effective localization and mapping, which is the estimation of the robot’s position and its surrounding environment. This survey presents an overview of state-of-the-art works on robot simultaneous localization and mapping (SLAM) with a focus on water and sewer pipe networks. It considers various aspects of the SLAM problem in pipes, from the motivation, to the water industry requirements, modern SLAM methods, map-types and sensors suited to pipes. Future challenges such as robustness for long term robot operation in pipes are discussed, including how making use of prior knowledge, e.g. geographic information systems (GIS) can be used to build map estimates, and improve the multi-robot SLAM in the pipe environmen
    corecore