48,064 research outputs found

    Subnanometer Translation of Microelectromechanical Systems Measured by Discrete Fourier Analysis of CCD Images

    Get PDF
    Abstract—In-plane linear displacements of microelectromechanical systems are measured with subnanometer accuracy by observing the periodic micropatterns with a charge-coupled device camera attached to an optical microscope. The translation of the microstructure is retrieved from the video by phase-shift computation using discrete Fourier transform analysis. This approach is validated through measurements on silicon devices featuring steep-sided periodic microstructures. The results are consistent with the electrical readout of a bulk micromachined capacitive sensor, demonstrating the suitability of this technique for both calibration and sensing. Using a vibration isolation table, a standard deviation of σ = 0.13 nm could be achieved, enabling a measurement resolution of 0.5 nm (4σ) and a subpixel resolution better than 1/100 pixel. [2010-0170

    Optimal Radiometric Calibration for Camera-Display Communication

    Full text link
    We present a novel method for communicating between a camera and display by embedding and recovering hidden and dynamic information within a displayed image. A handheld camera pointed at the display can receive not only the display image, but also the underlying message. These active scenes are fundamentally different from traditional passive scenes like QR codes because image formation is based on display emittance, not surface reflectance. Detecting and decoding the message requires careful photometric modeling for computational message recovery. Unlike standard watermarking and steganography methods that lie outside the domain of computer vision, our message recovery algorithm uses illumination to optically communicate hidden messages in real world scenes. The key innovation of our approach is an algorithm that performs simultaneous radiometric calibration and message recovery in one convex optimization problem. By modeling the photometry of the system using a camera-display transfer function (CDTF), we derive a physics-based kernel function for support vector machine classification. We demonstrate that our method of optimal online radiometric calibration (OORC) leads to an efficient and robust algorithm for computational messaging between nine commercial cameras and displays.Comment: 10 pages, Submitted to CVPR 201

    Highly sensitive and label-free digital detection of whole cell E. coli with interferometric reflectance imaging

    Full text link
    Bacterial infectious diseases are a major threat to human health. Timely and sensitive pathogenic bacteria detection is crucial in identifying the bacterial contaminations and preventing the spread of infectious diseases. Due to limitations of conventional bacteria detection techniques there have been concerted research efforts towards development of new biosensors. Biosensors offering label free, whole bacteria detection are highly desirable over those relying on label based or pathogenic molecular components detection. The major advantage is eliminating the additional time and cost required for labeling or extracting the desired bacterial components. Here, we demonstrate rapid, sensitive and label free E. coli detection utilizing interferometric reflectance imaging enhancement allowing for visualizing individual pathogens captured on the surface. Enabled by our ability to count individual bacteria on a large sensor surface, we demonstrate a limit of detection of 2.2 CFU/ml from a buffer solution with no sample preparation. To the best of our knowledge, this high level of sensitivity for whole E. coli detection is unprecedented in label free biosensing. The specificity of our biosensor is validated by comparing the response to target bacteria E. coli and non target bacteria S. aureus, K. pneumonia and P. aeruginosa. The biosensor performance in tap water also proves that its detection capability is unaffected by the sample complexity. Furthermore, our sensor platform provides high optical magnification imaging and thus validation of recorded detection events as the target bacteria based on morphological characterization. Therefore, our sensitive and label free detection method offers new perspectives for direct bacterial detection in real matrices and clinical samples.First author draf
    • …
    corecore