47,716 research outputs found

    A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined Augmentations Finetuning to Efficiently Improve the Robustness of CNNs

    Full text link
    Deep neural networks are often not robust to semantically-irrelevant changes in the input. In this work we address the issue of robustness of state-of-the-art deep convolutional neural networks (CNNs) against commonly occurring distortions in the input such as photometric changes, or the addition of blur and noise. These changes in the input are often accounted for during training in the form of data augmentation. We have two major contributions: First, we propose a new regularization loss called feature-map augmentation (FMA) loss which can be used during finetuning to make a model robust to several distortions in the input. Second, we propose a new combined augmentations (CA) finetuning strategy, that results in a single model that is robust to several augmentation types at the same time in a data-efficient manner. We use the CA strategy to improve an existing state-of-the-art method called stability training (ST). Using CA, on an image classification task with distorted images, we achieve an accuracy improvement of on average 8.94% with FMA and 8.86% with ST absolute on CIFAR-10 and 8.04% with FMA and 8.27% with ST absolute on ImageNet, compared to 1.98% and 2.12%, respectively, with the well known data augmentation method, while keeping the clean baseline performance.Comment: Accepted at ACM CSCS 2020 (8 pages, 4 figures

    A Novel Weight-Shared Multi-Stage CNN for Scale Robustness

    Get PDF
    Convolutional neural networks (CNNs) have demonstrated remarkable results in image classification for benchmark tasks and practical applications. The CNNs with deeper architectures have achieved even higher performance recently thanks to their robustness to the parallel shift of objects in images as well as their numerous parameters and the resulting high expression ability. However, CNNs have a limited robustness to other geometric transformations such as scaling and rotation. This limits the performance improvement of the deep CNNs, but there is no established solution. This study focuses on scale transformation and proposes a network architecture called the weight-shared multi-stage network (WSMS-Net), which consists of multiple stages of CNNs. The proposed WSMS-Net is easily combined with existing deep CNNs such as ResNet and DenseNet and enables them to acquire robustness to object scaling. Experimental results on the CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate that existing deep CNNs combined with the proposed WSMS-Net achieve higher accuracies for image classification tasks with only a minor increase in the number of parameters and computation time.Comment: accepted version, 13 page

    Adversarially Robust Distillation

    Full text link
    Knowledge distillation is effective for producing small, high-performance neural networks for classification, but these small networks are vulnerable to adversarial attacks. This paper studies how adversarial robustness transfers from teacher to student during knowledge distillation. We find that a large amount of robustness may be inherited by the student even when distilled on only clean images. Second, we introduce Adversarially Robust Distillation (ARD) for distilling robustness onto student networks. In addition to producing small models with high test accuracy like conventional distillation, ARD also passes the superior robustness of large networks onto the student. In our experiments, we find that ARD student models decisively outperform adversarially trained networks of identical architecture in terms of robust accuracy, surpassing state-of-the-art methods on standard robustness benchmarks. Finally, we adapt recent fast adversarial training methods to ARD for accelerated robust distillation.Comment: Accepted to AAAI Conference on Artificial Intelligence, 202

    Multimodal Deep Learning for Robust RGB-D Object Recognition

    Full text link
    Robust object recognition is a crucial ingredient of many, if not all, real-world robotics applications. This paper leverages recent progress on Convolutional Neural Networks (CNNs) and proposes a novel RGB-D architecture for object recognition. Our architecture is composed of two separate CNN processing streams - one for each modality - which are consecutively combined with a late fusion network. We focus on learning with imperfect sensor data, a typical problem in real-world robotics tasks. For accurate learning, we introduce a multi-stage training methodology and two crucial ingredients for handling depth data with CNNs. The first, an effective encoding of depth information for CNNs that enables learning without the need for large depth datasets. The second, a data augmentation scheme for robust learning with depth images by corrupting them with realistic noise patterns. We present state-of-the-art results on the RGB-D object dataset and show recognition in challenging RGB-D real-world noisy settings.Comment: Final version submitted to IROS'2015, results unchanged, reformulation of some text passages in abstract and introductio
    • …
    corecore