1,788 research outputs found

    Robust Linear Precoder Design for Multi-cell Downlink Transmission

    Full text link
    Coordinated information processing by the base stations of multi-cell wireless networks enhances the overall quality of communication in the network. Such coordinations for optimizing any desired network-wide quality of service (QoS) necessitate the base stations to acquire and share some channel state information (CSI). With perfect knowledge of channel states, the base stations can adjust their transmissions for achieving a network-wise QoS optimality. In practice, however, the CSI can be obtained only imperfectly. As a result, due to the uncertainties involved, the network is not guaranteed to benefit from a globally optimal QoS. Nevertheless, if the channel estimation perturbations are confined within bounded regions, the QoS measure will also lie within a bounded region. Therefore, by exploiting the notion of robustness in the worst-case sense some worst-case QoS guarantees for the network can be asserted. We adopt a popular model for noisy channel estimates that assumes that estimation noise terms lie within known hyper-spheres. We aim to design linear transceivers that optimize a worst-case QoS measure in downlink transmissions. In particular, we focus on maximizing the worst-case weighted sum-rate of the network and the minimum worst-case rate of the network. For obtaining such transceiver designs, we offer several centralized (fully cooperative) and distributed (limited cooperation) algorithms which entail different levels of complexity and information exchange among the base stations.Comment: 38 Pages, 7 Figures, To appear in the IEEE Transactions on Signal Processin

    Sub-Stream Fairness and Numerical Correctness in MIMO Interference Channels

    Full text link
    Signal-to-interference plus noise ratio (SINR) and rate fairness in a system are substantial quality-of-service (QoS) metrics. The acclaimed SINR maximization (max-SINR) algorithm does not achieve fairness between user's streams, i.e., sub-stream fairness is not achieved. To this end, we propose a distributed power control algorithm to render sub-stream fairness in the system. Sub-stream fairness is a less restrictive design metric than stream fairness (i.e., fairness between all streams) thus sum-rate degradation is milder. Algorithmic parameters can significantly differentiate the results of numerical algorithms. A complete picture for comparison of algorithms can only be depicted by varying these parameters. For example, a predetermined iteration number or a negligible increment in the sum-rate can be the stopping criteria of an algorithm. While the distributed interference alignment (DIA) can reasonably achieve sub-stream fairness for the later, the imbalance between sub-streams increases as the preset iteration number decreases. Thus comparison of max-SINR and DIA with a low preset iteration number can only depict a part of the picture. We analyze such important parameters and their effects on SINR and rate metrics to exhibit numerical correctness in executing the benchmarks. Finally, we propose group filtering schemes that jointly design the streams of a user in contrast to max-SINR scheme that designs each stream of a user separately.Comment: To be presented at IEEE ISWTA'1

    Beamforming Techniques for Non-Orthogonal Multiple Access in 5G Cellular Networks

    Full text link
    In this paper, we develop various beamforming techniques for downlink transmission for multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) systems. First, a beamforming approach with perfect channel state information (CSI) is investigated to provide the required quality of service (QoS) for all users. Taylor series approximation and semidefinite relaxation (SDR) techniques are employed to reformulate the original non-convex power minimization problem to a tractable one. Further, a fairness-based beamforming approach is proposed through a max-min formulation to maintain fairness between users. Next, we consider a robust scheme by incorporating channel uncertainties, where the transmit power is minimized while satisfying the outage probability requirement at each user. Through exploiting the SDR approach, the original non-convex problem is reformulated in a linear matrix inequality (LMI) form to obtain the optimal solution. Numerical results demonstrate that the robust scheme can achieve better performance compared to the non-robust scheme in terms of the rate satisfaction ratio. Further, simulation results confirm that NOMA consumes a little over half transmit power needed by OMA for the same data rate requirements. Hence, NOMA has the potential to significantly improve the system performance in terms of transmit power consumption in future 5G networks and beyond.Comment: accepted to publish in IEEE Transactions on Vehicular Technolog

    Generic Multiuser Coordinated Beamforming for Underlay Spectrum Sharing

    Full text link
    The beamforming techniques have been recently studied as possible enablers for underlay spectrum sharing. The existing beamforming techniques have several common limitations: they are usually system model specific, cannot operate with arbitrary number of transmit/receive antennas, and cannot serve arbitrary number of users. Moreover, the beamforming techniques for underlay spectrum sharing do not consider the interference originating from the incumbent primary system. This work extends the common underlay sharing model by incorporating the interference originating from the incumbent system into generic combined beamforming design that can be applied on interference, broadcast or multiple access channels. The paper proposes two novel multiuser beamforming algorithms for user fairness and sum rate maximization, utilizing newly derived convex optimization problems for transmit and receive beamformers calculation in a recursive optimization. Both beamforming algorithms provide efficient operation for the interference, broadcast and multiple access channels, as well as for arbitrary number of antennas and secondary users in the system. Furthermore, the paper proposes a successive transmit/receive optimization approach that reduces the computational complexity of the proposed recursive algorithms. The results show that the proposed complexity reduction significantly improves the convergence rates and can facilitate their operation in scenarios which require agile beamformers computation.Comment: 30 pages, 5 figure

    Distributed Multicell Beamforming Design Approaching Pareto Boundary with Max-Min Fairness

    Full text link
    This paper addresses coordinated downlink beamforming optimization in multicell time-division duplex (TDD) systems where a small number of parameters are exchanged between cells but with no data sharing. With the goal to reach the point on the Pareto boundary with max-min rate fairness, we first develop a two-step centralized optimization algorithm to design the joint beamforming vectors. This algorithm can achieve a further sum-rate improvement over the max-min optimal performance, and is shown to guarantee max-min Pareto optimality for scenarios with two base stations (BSs) each serving a single user. To realize a distributed solution with limited intercell communication, we then propose an iterative algorithm by exploiting an approximate uplink-downlink duality, in which only a small number of positive scalars are shared between cells in each iteration. Simulation results show that the proposed distributed solution achieves a fairness rate performance close to the centralized algorithm while it has a better sum-rate performance, and demonstrates a better tradeoff between sum-rate and fairness than the Nash Bargaining solution especially at high signal-to-noise ratio.Comment: 8 figures. To Appear in IEEE Trans. Wireless Communications, 201
    • …
    corecore