3 research outputs found

    A Novel Two Stream Decision Level Fusion of Vision and Inertial Sensors Data for Automatic Multimodal Human Activity Recognition System

    Full text link
    This paper presents a novel multimodal human activity recognition system. It uses a two-stream decision level fusion of vision and inertial sensors. In the first stream, raw RGB frames are passed to a part affinity field-based pose estimation network to detect the keypoints of the user. These keypoints are then pre-processed and inputted in a sliding window fashion to a specially designed convolutional neural network for the spatial feature extraction followed by regularized LSTMs to calculate the temporal features. The outputs of LSTM networks are then inputted to fully connected layers for classification. In the second stream, data obtained from inertial sensors are pre-processed and inputted to regularized LSTMs for the feature extraction followed by fully connected layers for the classification. At this stage, the SoftMax scores of two streams are then fused using the decision level fusion which gives the final prediction. Extensive experiments are conducted to evaluate the performance. Four multimodal standard benchmark datasets (UP-Fall detection, UTD-MHAD, Berkeley-MHAD, and C-MHAD) are used for experimentations. The accuracies obtained by the proposed system are 96.9 %, 97.6 %, 98.7 %, and 95.9 % respectively on the UP-Fall Detection, UTDMHAD, Berkeley-MHAD, and C-MHAD datasets. These results are far superior than the current state-of-the-art methods

    Computational Sleep Science: Machine Learning for the Detection, Diagnosis, and Treatment of Sleep Problems from Wearable Device Data

    Get PDF
    University of Minnesota Ph.D. dissertation.December 2017. Major: Computer Science. Advisor: Jaideep Srivastava. 1 computer file (PDF); xiii, 122 pages.This thesis is motivated by the rapid increase in global life expectancy without the respective improvements in quality of life. I propose several novel machine learning and data mining methodologies for approaching a paramount component of quality of life, the translational science field of sleep research. Inadequate sleep negatively affects both mental and physical well-being, and exacerbates many non-communicable health problems such as diabetes, depression, cancer and obesity. Taking advantage of the ubiquitous adoption of wearable devices, I create algorithmic solutions to analyse sensor data. The goal is to improve the quality of life of wearable device users, as well as provide clinical insights and tools for sleep researchers and care-providers. Chapter 1 is the introduction. This section substantiates the timely relevance of sleep research for today's society, and its contribution towards improved global health. It covers the history of sleep science technology and identifies core computing challenges in the field. The scope of the thesis is established and an approach is articulated. Useful definitions, sleep domain terminology, and some pre-processing steps are defined. Lastly, an outline for the remainder of the thesis is included. Chapter 2 dives into my proposed methodology for widespread screening of sleep disorders. It surveys results from the application of several statistical and data mining methods. It also introduces my novel deep learning architecture optimized for the unique dimensionality and nature of wearable device data. Chapter 3 focuses on the diagnosis stage of the sleep science process. I introduce a human activity recognition algorithm called RAHAR, Robust Automated Human Activity Recognition. This algorithm is unique in a number of ways, including its objective of annotating a behavioural time series with exertion levels rather than activity type. Chapter 4 focuses on the last step of the sleep science process, therapy. I define a pipeline to identify \textit{behavioural recipes}. These \textit{recipes} are the target behaviour that a user should complete in order to have good quality sleep. This work provides the foundation for building out a dynamic real-time recommender system for wearable device users, or a clinically administered cognitive behavioural therapy program. Chapter 5 summarizes the impact of this body of work, and takes a look into next steps. This chapter concludes my thesis
    corecore