1,002 research outputs found

    Control of Cooperating Mobile Manipulators

    Get PDF
    We describe a framework and control algorithms for coordinating multiple mobile robots with manipulators focusing on tasks that require grasping, manipulation and transporting large and possibly flexible objects without special purpose fixtures. Because each robot has an independent controller and is autonomous, the coordination and synergy are realized through sensing and communication. The robots can cooperatively transport objects and march in a tightly controlled formation, while also having the capability to navigate autonomously. We describe the key aspects of the overall hierarchy and the basic algorithms, with specific applications to our experimental testbed consisting of three robots. We describe results from many experiments that demonstrate the ability of the system to carry flexible boards and large boxes as well as the system’s robustness to alignment and odometry errors

    Control of Cooperating Mobile Manipulators

    Get PDF
    We describe a framework and control algorithms for coordinating multiple mobile robots with manipulators focusing on tasks that require grasping, manipulation and transporting large and possibly flexible objects without special purpose fixtures. Because each robot has an independent controller and is autonomous, the coordination and synergy are realized through sensing and communication. The robots can cooperatively transport objects and march in a tightly controlled formation, while also having the capability to navigate autonomously. We describe the key aspects of the overall hierarchy and the basic algorithms, with specific applications to our experimental testbed consisting of three robots. We describe results from many experiments that demonstrate the ability of the system to carry flexible boards and large boxes as well as the system’s robustness to alignment and odometry errors

    Robust Motion Control for Mobile Manipulator Using Resolved Acceleration and Proportional-Integral Active Force Control

    Full text link
    A resolved acceleration control (RAC) and proportional-integral active force control (PIAFC) is proposed as an approach for the robust motion control of a mobile manipulator (MM) comprising a differentially driven wheeled mobile platform with a two-link planar arm mounted on top of the platform. The study emphasizes on the integrated kinematic and dynamic control strategy in which the RAC is used to manipulate the kinematic component while the PIAFC is implemented to compensate the dynamic effects including the bounded known/unknown disturbances and uncertainties. The effectivenss and robustness of the proposed scheme are investigated through a rigorous simulation study and later complemented with experimental results obtained through a number of experiments performed on a fully developed working prototype in a laboratory environment. A number of disturbances in the form of vibratory and impact forces are deliberately introduced into the system to evaluate the system performances. The investigation clearly demonstrates the extreme robustness feature of the proposed control scheme compared to other systems considered in the study

    Cooperative impedance control with time-varying stiffness

    Get PDF
    The focus of much automation research has been to design controllers and robots that safely interact with the environment. One approach is to use impedance control to specify a relationship between a robot\u27s motion and force and control a grasped object\u27s apparent stiffness, damping, and inertia. Conventional impedance control practices have focused on position-based manipulators - which are inherently non-compliant - using constant, task-dependent impedances. In the event of large trajectory tracking errors, this implementation method generates large interaction forces that can damage the workcell. Additionally, these position-based devices require dedicated force/torque sensors to measure and apply forces. In this paper, we present an alternative impedance controller implemented on cooperating torque-based manipulators. Through the use of time-varying impedance parameters, this controller limits the interaction forces to ensure harmless manipulation. Successful completion of transport and insertion tasks demonstrated the effectiveness of the controller

    Coordination control of robot manipulators using flat outputs

    Get PDF
    Published ArticleThis paper focuses on the synchronizing control of multiple interconnected flexible robotic manipulators using differential flatness theory. The flatness theory has the advantage of simplifying trajectory tracking tasks of complex mechanical systems. Using this theory, we propose a new synchronization scheme whereby a formation of flatness based systems can be stabilized using their respective flat outputs. Using the flat outputs, we eliminate the need for cross coupling laws and communication protocols associated with such formations. The problem of robot coordination is reduced to synchronizing the flat outputs between the respective robot manipulators. Furthermore, the selection of the flat output used for the synchronizing control is not restricted as any system variable can be used. The problem of unmeasured states used in the control is also solved by reconstructing the missing states using flatness based interpolation. The proposed control law is less computationally intensive when compared to earlier reported work as integration of the differential equations is not required. Simulations using a formation of single link flexible joint robots are used to validate the proposed synchronizing control

    Experiments in Nonlinear Adaptive Control of Multi-Manipulator, Free-Flying Space Robots

    Get PDF
    Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level tasks. Robots and astronauts can work together efficiently, as a team; but the robot must be capable of accomplishing complex operations and yet be easy to use. Multiple cooperating manipulators are essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions, without human intervention, in response to changes in its environment. Previous work in the Aerospace Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators. The research presented in this dissertation extends that work by adding adaptive control. To help achieve this high level of robot sophistication, this research made several advances to the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm developed originally for control of robots, but requiring joint positions as inputs, was extended here to handle the much more general case of manipulator endpoint-position commands. A new system modelling technique, called system concatenation was developed to simplify the generation of a system model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the task-space concept was introduced wherein the operator's inputs specify only the robot's task. The robot's subsequent autonomous performance of each task still involves, of course, endpoint positions and joint configurations as subsets. The combination of these developments resulted in a new adaptive control framework that is capable of continuously providing full adaptation capability to the complex space-robot system in all modes of operation. The new adaptive control algorithm easily handles free-flying systems with multiple, interacting manipulators, and extends naturally to even larger systems. The new adaptive controller was experimentally demonstrated on an ideal testbed in the ARL-A first-ever experimental model of a multi-manipulator, free-flying space robot that is capable of capturing and manipulating free-floating objects without requiring human assistance. A graphical user interface enhanced the robot usability: it enabled an operator situated at a remote location to issue high-level task description commands to the robot, and to monitor robot activities as it then carried out each assignment autonomously
    corecore