15 research outputs found

    Self-Updating Models with Error Remediation

    Full text link
    Many environments currently employ machine learning models for data processing and analytics that were built using a limited number of training data points. Once deployed, the models are exposed to significant amounts of previously-unseen data, not all of which is representative of the original, limited training data. However, updating these deployed models can be difficult due to logistical, bandwidth, time, hardware, and/or data sensitivity constraints. We propose a framework, Self-Updating Models with Error Remediation (SUMER), in which a deployed model updates itself as new data becomes available. SUMER uses techniques from semi-supervised learning and noise remediation to iteratively retrain a deployed model using intelligently-chosen predictions from the model as the labels for new training iterations. A key component of SUMER is the notion of error remediation as self-labeled data can be susceptible to the propagation of errors. We investigate the use of SUMER across various data sets and iterations. We find that self-updating models (SUMs) generally perform better than models that do not attempt to self-update when presented with additional previously-unseen data. This performance gap is accentuated in cases where there is only limited amounts of initial training data. We also find that the performance of SUMER is generally better than the performance of SUMs, demonstrating a benefit in applying error remediation. Consequently, SUMER can autonomously enhance the operational capabilities of existing data processing systems by intelligently updating models in dynamic environments.Comment: 17 pages, 13 figures, published in the proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II conference in the SPIE Defense + Commercial Sensing, 2020 symposiu

    Online Decision Mediation

    Full text link
    Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior: At each time, the algorithm observes an action chosen by a fallible agent, and decides whether to *accept* that agent's decision, *intervene* with an alternative, or *request* the expert's opinion. For instance, in clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances, thus real-world decision support is often limited to monitoring and forecasting. Instead, such an intermediary would strike a prudent balance between the former (purely prescriptive) and latter (purely descriptive) approaches, while providing an efficient interface between human mistakes and expert feedback. In this work, we first formalize the sequential problem of *online decision mediation* -- that is, of simultaneously learning and evaluating mediator policies from scratch with *abstentive feedback*: In each round, deferring to the oracle obviates the risk of error, but incurs an upfront penalty, and reveals the otherwise hidden expert action as a new training data point. Second, we motivate and propose a solution that seeks to trade off (immediate) loss terms against (future) improvements in generalization error; in doing so, we identify why conventional bandit algorithms may fail. Finally, through experiments and sensitivities on a variety of datasets, we illustrate consistent gains over applicable benchmarks on performance measures with respect to the mediator policy, the learned model, and the decision-making system as a whole
    corecore