2 research outputs found

    Locality Constraint Dictionary Learning with Support Vector for Pattern Classification

    Full text link
    Discriminative dictionary learning (DDL) has recently gained significant attention due to its impressive performance in various pattern classification tasks. However, the locality of atoms is not fully explored in conventional DDL approaches which hampers their classification performance. In this paper, we propose a locality constraint dictionary learning with support vector discriminative term (LCDL-SV), in which the locality information is preserved by employing the graph Laplacian matrix of the learned dictionary. To jointly learn a classifier during the training phase, a support vector discriminative term is incorporated into the proposed objective function. Moreover, in the classification stage, the identity of test data is jointly determined by the regularized residual and the learned multi-class support vector machine. Finally, the resulting optimization problem is solved by utilizing the alternative strategy. Experimental results on benchmark databases demonstrate the superiority of our proposed method over previous dictionary learning approaches on both hand-crafted and deep features. The source code of our proposed LCDL-SV is accessible at https://github.com/yinhefeng/LCDL-SVComment: submitted to IEEE Acces

    Sparse, Collaborative, or Nonnegative Representation: Which Helps Pattern Classification?

    Full text link
    The use of sparse representation (SR) and collaborative representation (CR) for pattern classification has been widely studied in tasks such as face recognition and object categorization. Despite the success of SR/CR based classifiers, it is still arguable whether it is the β„“1\ell_{1}-norm sparsity or the β„“2\ell_{2}-norm collaborative property that brings the success of SR/CR based classification. In this paper, we investigate the use of nonnegative representation (NR) for pattern classification, which is largely ignored by previous work. Our analyses reveal that NR can boost the representation power of homogeneous samples while limiting the representation power of heterogeneous samples, making the representation sparse and discriminative simultaneously and thus providing a more effective solution to representation based classification than SR/CR. Our experiments demonstrate that the proposed NR based classifier (NRC) outperforms previous representation based classifiers. With deep features as inputs, it also achieves state-of-the-art performance on various visual classification tasks
    corecore