3 research outputs found

    Kronecker STAP and SAR GMTI

    Full text link
    As a high resolution radar imaging modality, SAR detects and localizes non-moving targets accurately, giving it an advantage over lower resolution GMTI radars. Moving target detection is more challenging due to target smearing and masking by clutter. Space-time adaptive processing (STAP) is often used on multiantenna SAR to remove the stationary clutter and enhance the moving targets. In (Greenewald et al., 2016) it was shown that the performance of STAP can be improved by modeling the clutter covariance as a space vs. time Kronecker product with low rank factors, providing robustness and reducing the number of training samples required. In this work, we present a massively parallel algorithm for implementing Kronecker product STAP, enabling application to very large SAR datasets (such as the 2006 Gotcha data collection) using GPUs. Finally, we develop an extension of Kronecker STAP that uses information from multiple passes to improve moving target detection.Comment: 12 pgs, to appear at SPIE 2016. arXiv admin note: text overlap with arXiv:1501.0748

    Kronecker PCA Based Robust SAR STAP

    Full text link
    In this work the detection of moving targets in multiantenna SAR is considered. As a high resolution radar imaging modality, SAR detects and identifies stationary targets very well, giving it an advantage over classical GMTI radars. Moving target detection is more challenging due to the "burying" of moving targets in the clutter and is often achieved using space-time adaptive processing (STAP) (based on learning filters from the spatio-temporal clutter covariance) to remove the stationary clutter and enhance the moving targets. In this work, it is noted that in addition to the oft noted low rank structure, the clutter covariance is also naturally in the form of a space vs time Kronecker product with low rank factors. A low-rank KronPCA covariance estimation algorithm is proposed to exploit this structure, and a separable clutter cancelation filter based on the Kronecker covariance estimate is proposed. Together, these provide orders of magnitude reduction in the number of training samples required, as well as improved robustness to corruption of the training data, e.g. due to outliers and moving targets. Theoretical properties of the proposed estimation algorithm are derived and the significant reductions in training complexity are established under the spherically invariant random vector model (SIRV). Finally, an extension of this approach incorporating multipass data (change detection) is presented. Simulation results and experiments using the real Gotcha SAR GMTI challenge dataset are presented that confirm the advantages of our approach relative to existing techniques.Comment: Tech report. Shorter version submitted to IEEE AE

    Robust SAR STAP via Kronecker Decomposition

    Full text link
    This paper proposes a spatio-temporal decomposition for the detection of moving targets in multiantenna SAR. As a high resolution radar imaging modality, SAR detects and localizes non-moving targets accurately, giving it an advantage over lower resolution GMTI radars. Moving target detection is more challenging due to target smearing and masking by clutter. Space-time adaptive processing (STAP) is often used to remove the stationary clutter and enhance the moving targets. In this work, it is shown that the performance of STAP can be improved by modeling the clutter covariance as a space vs. time Kronecker product with low rank factors. Based on this model, a low-rank Kronecker product covariance estimation algorithm is proposed, and a novel separable clutter cancelation filter based on the Kronecker covariance estimate is introduced. The proposed method provides orders of magnitude reduction in the required number of training samples, as well as improved robustness to corruption of the training data. Simulation results and experiments using the Gotcha SAR GMTI challenge dataset are presented that confirm the advantages of our approach relative to existing techniques.Comment: to appear at IEEE AES. arXiv admin note: text overlap with arXiv:1604.03622, arXiv:1501.0748
    corecore