1,198 research outputs found

    Robots Providing Cognitive Assistance in Shared Workspaces

    Get PDF
    Human-Robot Collaboration is an area of particular current interest, with the attempt to make robots more generally useful in contexts where they work side-by-side with humans. Currently, efforts typically focus on the sensory and motor aspects of the task on the part of the robot to enable them to function safely and effectively given an assigned task. In the present contribution, we rather focus on the cognitive faculties of the human worker by attempting to incorporate known (from psychology) properties of human cognition. In a proof-of-concept study, we demonstrate how applying characteristics of human categorical perception to the type of robot assistance impacts on task performance and experience of the participants. This lays the foundation for further developments in cognitive assistance and collaboration in side-by-side working for humans and robots

    Efficient learning of sequential tasks for collaborative robots: a neurodynamic approach

    Get PDF
    Dissertação de mestrado integrado em Engenharia Eletrónica, Industrial e ComputadoresIn the recent years, there has been an increasing demand for collaborative robots able to interact and co operate with ordinary people in several human environments, sharing physical space and working closely with people in joint tasks, both within industrial and domestic environments. In some scenarios, these robots will come across tasks that cannot be fully designed beforehand, resulting in a need for flexibility and adaptation to the changing environments. This dissertation aims to endow robots with the ability to acquire knowledge of sequential tasks using the Programming by Demonstration (PbD) paradigm. Concretely, it extends the learning models - based on Dynamic Neural Fields (DNFs) - previously developed in the Mobile and Anthropomorphic Robotics Laboratory (MARLab), at the University of Minho, to the collaborative robot Sawyer, which is amongst the newest collaborative robots on the market. The main goal was to endow Sawyer with the ability to learn a sequential task from tutors’ demonstrations, through a natural and efficient process. The developed work can be divided into three main tasks: (1) first, a previously developed neuro-cognitive control architecture for extracting the sequential structure of a task was implemented and tested in Sawyer, combined with a Short-Term Memory (STM) mechanism to memorize a sequence in one-shot, aiming to reduce the number of demonstration trials; (2) second, the previous model was extended to incorporate workspace information and action selection in a Human-Robot Collaboration (HRC) scenario where robot and human co worker coordinate their actions to construct the structure; and (3) third, the STM mechanism was also extended to memorize ordinal and temporal aspects of the sequence, demonstrated by tutors with different behavior time scales. The models implemented contributed to a more intuitive and practical interaction with the robot for human co-workers. The STM model made the learning possible from few demonstrations to comply with the requirement of being an efficient method for learning. Moreover, the recall of the memorized information allowed Sawyer to evolve from being in a learning position to be in a teaching one, obtaining the capability of assisting inexperienced co-workers.Nos últimos anos, tem havido uma crescente procura por robôs colaborativos capazes de interagir e cooperar com pessoas comuns em vários ambientes, partilhando espaço físico e trabalhando em conjunto, tanto em ambientes industriais como domésticos. Em alguns cenários, estes robôs serão confrontados com tarefas que não podem ser previamente planeadas, o que resulta numa necessidade de existir flexibilidade e adaptação ao ambiente que se encontra em constante mudança. Esta dissertação pretende dotar robôs com a capacidade de adquirir conhecimento de tarefas sequenciais utilizando técnicas de Programação por Demonstração. De forma a continuar o trabalho desenvolvido no Laboratório de Robótica Móvel e Antropomórfica da Universidade do Minho, esta dissertação visa estender os modelos de aprendizagem previamente desenvolvidos ao robô colaborativo Sawyer, que é um dos mais recentes no mercado. O principal objetivo foi dotar o robô com a capacidade de aprender tarefas sequenciais por demonstração, através de um processo natural e eficiente. O trabalho desenvolvido pode ser dividido em três tarefas principais: (1) em primeiro lugar, uma arquitetura de controlo baseada em modelos neurocognitivos, desenvolvida anteriormente, para aprender a estrutura de uma tarefa sequencial foi implementada e testada no robô Sawyer, conjugada com um mecanismo de Short Term Memory que permitiu memorizar uma sequência apenas com uma demonstração, para reduzir o número de demonstrações necessárias; (2) em segundo lugar, o modelo anterior foi estendido para englobar informação acerca do espaço de trabalho e seleção de ações num cenário de Colaboração Humano-Robô em que ambos coordenam as suas ações para construir a tarefa; (3) em terceiro lugar, o mecanismo de Short-Term Memory foi também estendido para memorizar informação ordinal e temporal de uma sequência de passos demonstrada por tutores com comportamentos temporais diferentes. Os modelos implementados contribuíram para uma interação com o robô mais intuitiva e prática para os co-workers humanos. O mecanismo de Short-Term Memory permitiu que a aprendizagem fosse realizada a partir de poucas demonstrações, para cumprir com o requisito de ser um método de aprendizagem eficiente. Além disso, a informação memorizada permitiu ao Sawyer evoluir de uma posição de aprendizagem para uma posição em que é capaz de instruir co-workers inexperientes.This work was carried out within the scope of the project “PRODUTECH SIF - Soluções para a Indústria do Futuro”, reference POCI-01-0247-FEDER-024541, cofunded by “Fundo Europeu de Desenvolvimento Regional (FEDER)”, through “Programa Operacional Competitividade e Internacionalização (POCI)”

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201

    Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review

    Get PDF
    Abstract Human–robot collaboration is a main technology of Industry 4.0 and is currently changing the shop floor of manufacturing companies. Collaborative robots are innovative industrial technologies introduced to help operators to perform manual activities in so called cyber-physical production systems and combine human inimitable abilities with smart machines strengths. Occupational health and safety criteria are of crucial importance in the implementation of collaborative robotics. Therefore, it is necessary to assess the state of the art for the design of safe and ergonomic collaborative robotic workcells. Emerging research fields beyond the state of the art are also of special interest. To achieve this goal this paper uses a systematic literature review methodology to review recent technical scientific bibliography and to identify current and future research fields. Main research themes addressed in the recent scientific literature regarding safety and ergonomics (or human factors) for industrial collaborative robotics were identified and categorized. The emerging research challenges and research fields were identified and analyzed based on the development of publications over time (annual growth)

    Mixed reality participants in smart meeting rooms and smart home enviroments

    Get PDF
    Human–computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in a virtual meeting room, we discuss how remote meeting participants can take part in meeting activities and they have some observations on translating research results to smart home environments
    corecore