7 research outputs found

    Design, fabrication and testing a semi-automatic sewing device for personalized stent graft manufacturing

    Get PDF
    For the treatment of Abdominal Aortic Aneurysm (AAA), a personalised stent graft is used to ensure it fits tightly to the patients vessel geometry. A personalised stent graft is usually handmade which requires thousands of stitches and can take weeks or even months to complete. This delay may expose the patient to the risk of aneurysm rupture. This paper presents a robotic sewing device that can enhance the stent graft sewing speed by providing automated needle manipulation. It simplifies the sewing process and has the potential to achieve fully automated stent graft manufacturing via a vision-guided system. The device features a sewing probe that can switch a double pointed semi-circular needle between two movable jaws. This forgoes the need for manual needle handling including grasping, driving rotation, releasing and re-grasping, which requires a high level of manual dexterity and attention. This paper presents the design of the device, its mechanical synthesis and experimental validation. The focus of the paper is on the linkage parameter optimisation and needle locking mechanism design. The proposed device has been fabricated using 3D rapid prototyping techniques, and its performance has been compared with the conventional manual sewing method. The experimental results show that the device can achieve a 30% reduction of the completion time for a stitching task while achieving better consistency and quality of the stitches

    A Vision-guided Dual Arm Sewing System for Stent Graft Manufacturing

    Get PDF
    This paper presents an intelligent sewing system for personalized stent graft manufacturing, a challenging sewing task that is currently performed manually. Inspired by medical suturing robots, we have adopted a single-sided sewing technique using a curved needle to perform the task of sewing stents onto fabric. A motorized surgical needle driver was attached to a 7 d.o.f robot arm to manipulate the needle with a second robot controlling the position of the mandrel. A learningfrom-demonstration approach was used to program the robot to sew stents onto fabric. The demonstrated sewing skill was segmented to several phases, each of which was encoded with a Gaussian Mixture Model. Generalized sewing movements were then generated from these models and were used for task execution. During execution, a stereo vision system was adopted to guide the robots to adjust the learnt movements according to the needle pose. Two experiments are presented here with this system and the results show that our system can robustly perform the sewing task as well as adapt to various needle poses. The accuracy of the sewing system was within 2mm

    Robotic sewing and knot tying for personalized stent graft manufacturing

    No full text
    This paper presents a versatile robotic system for sewing 3D structured object. Leveraging on using a customized robotic sewing device and closed-loop visual servoing control, an all-in-one solution for sewing personalized stent graft is demonstrated. Stitch size planning and automatic knot tying are proposed as the two key functions of the system. By using effective stitch size planning, sub-millimetre sewing accuracy is achieved for stitch sizes ranging from 2mm to 5mm. In addition, a thread manipulator for thread management and tension control is also proposed to perform successive knot tying to secure each stitch. Detailed laboratory experiments have been performed to access the proposed instruments and allied algorithms. The proposed framework can be generalised to a wide range of applications including 3D industrial sewing, as well as transferred to other clinical areas such as surgical suturing

    Drug Discovery

    Get PDF
    Natural products are a constant source of potentially active compounds for the treatment of various disorders. The Middle East and tropical regions are believed to have the richest supplies of natural products in the world. Plant derived secondary metabolites have been used by humans to treat acute infections, health disorders and chronic illness for tens of thousands of years. Only during the last 100 years have natural products been largely replaced by synthetic drugs. Estimates of 200 000 natural products in plant species have been revised upward as mass spectrometry techniques have developed. For developing countries the identification and use of endogenous medicinal plants as cures against cancers has become attractive. Books on drug discovery will play vital role in the new era of disease treatment using natural products

    Bowdoin Orient v.136, no.1-25 (2006-2007)

    Get PDF
    https://digitalcommons.bowdoin.edu/bowdoinorient-2000s/1007/thumbnail.jp

    Online courses for healthcare professionals: is there a role for social learning?

    Get PDF
    Background: All UK postgraduate medical trainees receive supervision from trained supervisors. Training has traditionally been delivered via face to face courses, but with increasing time pressures and complex shift patterns, access to these is difficult. To meet this challenge, we developed a two-week massive open online course (MOOC) for faculty development of clinical supervisors. Summary of Work: The MOOC was developed by a group of experienced medical educators and delivered via the FutureLearn (FL) platform which promotes social learning through interaction. This facilitates building of communities of practice, learner interaction and collaboration. We explored learner perceptions of the course, in particular the value of social learning in the context of busy healthcare professionals. We analysed responses to pre- and post-course surveys for each run of the MOOC in 2015, FL course statistics, and learner discussion board comments. Summary of Results: Over 2015, 7,225 learners registered for the course, though 6% left the course without starting. Of the 3,055 learners who began the course, 35% (1073/3055) were social learners who interacted with other participants. Around 31% (960/3055) learners participated fully in the course; this is significantly higher than the FL average of 22%. Survey responses suggest that 68% learners worked full-time, with over 75% accessing the course at home or while commuting, using laptops, smart phones and tablet devices. Discussion: Learners found the course very accessible due to the bite-sized videos, animations, etc which were manageable at the end of a busy working day. Inter-professional discussions and social learning made the learning environment more engaging. Discussion were rated as high quality as they facilitated sharing of narratives and personal reflections, as well as relevant resources. Conclusion: Social learning added value to the course by promoting sharing of resources and improved interaction between learners within the online environment. Take Home Messages: 1) MOOCs can provide faculty development efficiently with a few caveats. 2) Social learning added a new dimension to the online environment
    corecore