5,818 research outputs found

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    Preliminary development and technical evaluation of a belt-actuated robotic rehabilitation platform

    Get PDF
    BACKGROUND: To provide effective rehabilitation in the early post-injury stage, a novel robotic rehabilitation platform is proposed, which provides full-body arm-leg rehabilitation via belt actuation to severely disabled patients who are restricted to bed rest. OBJECTIVE: To design and technically evaluate the preliminary development of the rehabilitation platform, with a focus on the generation of various leg movements. METHODS: Two computer models were developed by importing the components from SolidWorks into Simscape Multibody in MATLAB. This allowed simulation of various stepping movements in supine-lying and side-lying positions. Two belt-actuated test rigs were manufactured and automatic control programs were developed in TIA Portal. Finally, the functionality of the test rigs was technically evaluated. RESULTS: Computer simulation yielded target positions for the generation of various stepping movements in the experimental platforms. The control system enabled the two-drive test rig to provide three modes of stepping in a supine position. In addition, the four-drive test rig produced walking-like stepping in a side-lying position. CONCLUSIONS: This work confirmed the feasibility of the mechanical development and control system of the test rigs, which are deemed applicable for further development of the overall novel robotic rehabilitation platform

    Motion planning using synergies : application to anthropomorphic dual-arm robots

    Get PDF
    Motion planning is a traditional field in robotics, but new problems are nevertheless incessantly appearing, due to continuous advances in the robot developments. In order to solve these new problems, as well as to improve the existing solutions to classical problems, new approaches are being proposed. A paradigmatic case is the humanoid robotics, since the advances done in this field require motion planners not only to look efficiently for an optimal solution in the classic way, i.e. optimizing consumed energy or time in the plan execution, but also looking for human-like solutions, i.e. requiring the robot movements to be similar to those of the human beings. This anthropomorphism in the robot motion is desired not only for aesthetical reasons, but it is also needed to allow a better and safer human-robot collaboration: humans can predict more easily anthropomorphic robot motions thus avoiding collisions and enhancing the collaboration with the robot. Nevertheless, obtaining a satisfactory performance of these anthropomorphic robotic systems requires the automatic planning of the movements, which is still an arduous and non-evident task since the complexity of the planning problem increases exponentially with the number of degrees of freedom of the robotic system. This doctoral thesis tackles the problem of planning the motions of dual-arm anthropomorphic robots (optionally with mobile base). The main objective is twofold: obtaining robot motions both in an efficient and in a human-like fashion at the same time. Trying to mimic the human movements while reducing the complexity of the search space for planning purposes leads to the concept of synergies, which could be conceptually defined as correlations (in the joint configuration space as well as in the joint velocity space) between the degrees of freedom of the system. This work proposes new sampling-based motion-planning procedures that exploit the concept of synergies, both in the configuration and velocity space, coordinating the movements of the arms, the hands and the mobile base of mobile anthropomorphic dual-arm robots.La planificación de movimientos es un campo tradicional de la robótica, sin embargo aparecen incesantemente nuevos problemas debido a los continuos avances en el desarrollo de los robots. Para resolver esos nuevos problemas, así como para mejorar las soluciones existentes a los problemas clásicos, se están proponiendo nuevos enfoques. Un caso paradigmático es la robótica humanoide, ya que los avances realizados en este campo requieren que los algoritmos planificadores de movimientos no sólo encuentren eficientemente una solución óptima en el sentido clásico, es decir, optimizar el consumo de energía o el tiempo de ejecución de la trayectoria; sino que también busquen soluciones con apariencia humana, es decir, que el movimiento del robot sea similar al del ser humano. Este antropomorfismo en el movimiento del robot se busca no sólo por razones estéticas, sino porque también es necesario para permitir una colaboración mejor y más segura entre el robot y el operario: el ser humano puede predecir con mayor facilidad los movimientos del robot si éstos son antropomórficos, evitando así las colisiones y mejorando la colaboración humano robot. Sin embargo, para obtener un desempeño satisfactorio de estos sistemas robóticos antropomórficos se requiere una planificación automática de sus movimientos, lo que sigue siendo una tarea ardua y poco evidente, ya que la complejidad del problema aumenta exponencialmente con el número de grados de libertad del sistema robótico. Esta tesis doctoral aborda el problema de la planificación de movimientos en robots antropomorfos bibrazo (opcionalmente con base móvil). El objetivo aquí es doble: obtener movimientos robóticos de forma eficiente y, a la vez, que tengan apariencia humana. Intentar imitar los movimientos humanos mientras a la vez se reduce la complejidad del espacio de búsqueda conduce al concepto de sinergias, que podrían definirse conceptualmente como correlaciones (tanto en el espacio de configuraciones como en el espacio de velocidades de las articulaciones) entre los distintos grados de libertad del sistema. Este trabajo propone nuevos procedimientos de planificación de movimientos que explotan el concepto de sinergias, tanto en el espacio de configuraciones como en el espacio de velocidades, coordinando así los movimientos de los brazos, las manos y la base móvil de robots móviles, bibrazo y antropomórficos.Postprint (published version

    A Stochastic Approach to Shortcut Bridging in Programmable Matter

    Full text link
    In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called particles with limited memory and communication self-organize to solve system-wide problems of movement, coordination, and configuration. In this paper, we consider a stochastic, distributed, local, asynchronous algorithm for "shortcut bridging", in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost of the bridge. Army ants of the genus Eciton have been observed exhibiting a similar behavior in their foraging trails, dynamically adjusting their bridges to satisfy an efficiency trade-off using local interactions. Using techniques from Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being "shortcut" similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm with the army ant bridging behavior. Our work gives a plausible explanation of how convergence to globally optimal configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational power and access to random bits. The proposed algorithm also demonstrates the robustness of the stochastic approach to algorithms for programmable matter, as it is a surprisingly simple extension of our previous stochastic algorithm for compression.Comment: Published in Proc. of DNA23: DNA Computing and Molecular Programming - 23rd International Conference, 2017. An updated journal version will appear in the DNA23 Special Issue of Natural Computin
    corecore