350,764 research outputs found
The Usage and Evaluation of Anthropomorphic Form in Robot Design
There are numerous examples illustrating the application of human shape in everyday products. Usage of anthropomorphic form has long been a basic design strategy, particularly in the design of intelligent service robots. As such, it is desirable to use anthropomorphic form not only in aesthetic design but also in interaction design. Proceeding from how anthropomorphism in various domains has taken effect on human perception, we assumed that anthropomorphic form used in appearance and interaction design of robots enriches the explanation of its function and creates familiarity with robots. From many cases we have found, misused anthropomorphic form lead to user disappointment or negative impressions on the robot. In order to effectively use anthropomorphic form, it is necessary to measure the similarity of an artifact to the human form (humanness), and then evaluate whether the usage of anthropomorphic form fits the artifact. The goal of this study is to propose a general evaluation framework of anthropomorphic form for robot design. We suggest three major steps for framing the evaluation: 'measuring anthropomorphic form in appearance', 'measuring anthropomorphic form in Human-Robot Interaction', and 'evaluation of accordance of two former measurements'. This evaluation process will endow a robot an amount of humanness in their appearance equivalent to an amount of humanness in interaction ability, and then ultimately facilitate user satisfaction.
Keywords:
Anthropomorphic Form; Anthropomorphism; Human-Robot Interaction; Humanness; Robot Design</p
Robot training using system identification
This paper focuses on developing a formal, theory-based design methodology to generate transparent robot control programs using mathematical functions. The research finds its theoretical roots in robot training and system identification techniques such as Armax (Auto-Regressive Moving Average models with eXogenous inputs) and Narmax (Non-linear Armax). These techniques produce linear and non-linear polynomial functions that model the relationship between a robot’s sensor perception and motor response.
The main benefits of the proposed design methodology, compared to the traditional robot programming techniques are: (i) It is a fast and efficient way of generating robot control code, (ii) The generated robot control programs are transparent mathematical functions that can be used to form hypotheses and theoretical analyses of robot behaviour, and (iii) It requires very little explicit knowledge of robot programming where end-users/programmers who do not have any specialised robot programming skills can nevertheless generate task-achieving sensor-motor couplings.
The nature of this research is concerned with obtaining sensor-motor couplings, be it through human demonstration via the robot, direct human demonstration, or other means. The viability of our methodology has been demonstrated by teaching various mobile robots different sensor-motor tasks such as wall following, corridor passing, door traversal and route learning
An application of lyapunov stability analysis to improve the performance of NARMAX models
Previously we presented a novel approach to program a robot controller based on system identification and robot training techniques. The proposed method works in two stages: first, the programmer demonstrates the desired behaviour to the robot by driving it manually in the target environment. During this run, the sensory perception and the desired velocity commands of the robot are logged. Having thus obtained training data we model the relationship between sensory readings and the motor commands of the robot using ARMAX/NARMAX models and system identification techniques. These produce linear or non-linear polynomials which can be formally analysed, as well as used in place of “traditional robot” control code.
In this paper we focus our attention on how the mathematical analysis of NARMAX models can be used to understand the robot’s control actions, to formulate hypotheses and to improve the robot’s behaviour. One main objective behind this approach is to avoid trial-and-error refinement of robot code. Instead, we seek to obtain a reliable design process, where program design decisions are
based on the mathematical analysis of the model describing how the robot interacts with its environment to achieve the desired behaviour. We demonstrate this procedure through the analysis of a particular task in mobile robotics: door traversal
The Iterative Development of the Humanoid Robot Kaspar: An Assistive Robot for Children with Autism
This paper gives an overview of the design and development of the humanoid robot Kaspar. Since the first Kaspar robot was developed in 2005, the robotic platform has undergone continuous development driven by the needs of users and technological advancements enabling the integration of new features. We discuss in detail the iterative development of Kaspar’s design and clearly explain the rational of each development, which has been based on the user requirements as well as our years of experience in robot assisted therapy for children with autism, particularly focusing on how the developments benefit the children we work with. Further to this, we discuss the role and benefits of robotic autonomy on both children and therapist along with the progress that we have made on the Kaspar robot’s autonomy towards achieving a semi-autonomous child-robot interaction in a real world setting.Peer reviewe
A motion system for social and animated robots
This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI), with a special focus on Robot Assisted Therapy (RAT). When used for therapy it is important that a social robot is able to create an "illusion of life" so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of "likeability". The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium
Interactive Co-Design of Form and Function for Legged Robots using the Adjoint Method
Our goal is to make robotics more accessible to casual users by reducing the
domain knowledge required in designing and building robots. Towards this goal,
we present an interactive computational design system that enables users to
design legged robots with desired morphologies and behaviors by specifying
higher level descriptions. The core of our method is a design optimization
technique that reasons about the structure, and motion of a robot in coupled
manner in order to achieve user-specified robot behavior, and performance. We
are inspired by the recent works that also aim to jointly optimize robot's form
and function. However, through efficient computation of necessary design
changes, our approach enables us to keep user-in-the-loop for interactive
applications. We evaluate our system in simulation by automatically improving
robot designs for multiple scenarios. Starting with initial user designs that
are physically infeasible or inadequate to perform the user-desired task, we
show optimized designs that achieve user-specifications, all while ensuring an
interactive design flow.Comment: 8 pages; added link of the accompanying vide
- …
