2,224 research outputs found

    Chromosomal control of pig populations in France: 2002-2006 survey

    Get PDF
    The chromosomal control of pig populations has been widely developed in France over the last ten years. By December 31st, 2006, 13 765 individuals had been karyotyped in our laboratory, 62% of these since 2002. Ninety percent were young purebred boars controlled before service in artificial insemination centres, and 3% were hypoprolific boars. So far, 102 constitutional structural chromosomal rearrangements (67 since 2002) have been described. Fifty-six were reciprocal translocations and 8 peri- or paracentric inversions. For the first time since the beginning of the programme and after more than 11 000 pigs had been karyotyped, one Robertsonian translocation was identified in 2005 and two others in 2006. The estimated prevalence of balanced structural chromosomal rearrangements in a sample of more than 7700 young boars controlled before service was 0.47%. Twenty-one of the 67 rearrangements described since 2002 were identified in hypoprolific boars. All were reciprocal translocations. Twelve mosaics (XX/XY in 11 individuals, XY/XXY in one individual) were also diagnosed. Two corresponded to hypoprolific boars, and three to intersexed animals. The results presented in this communication would justify an intensification of the chromosomal control of French and, on a broader scale, European and North-American pig populations

    Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes

    Get PDF
    In mammals, Robertsonian (Rb) translocation (the joining of two telo/acrocentric chromosomes at their centromere to form a metacentric) is the most effective process in chromosomal evolution leading to speciation; its occurrence also affects human health (through the induction of trisomies) and the fertility of farm animals. To understand the mechanism of Rb translocation, we used the house mouse as a model system and studied the organization of pericentromeric satellite DNAs (satDNA) of telocentrics and Rb chromosomes, both minor and major satDNA. The chromosome-orientation fluorescence in situ hybridization (CO-FISH) technique was used to analyze the major satDNA. To detect the very small amount of minor satDNA, a procedure was developed that combines CO-FISH with primed in situ labeling and conventional FISH and is five times more sensitive than the CO-FISH procedure alone. It was found that both the major and the minor satDNA tandem repeats are oriented head-to-tail in telocentric and Rb chromosomes, and their polarity is always the same relative to the centromere. We suggest that all tandemly repetitive satDNAs in a species probably are locked into such a symmetry constraint as a universal consequence of chromosomal evolution. Rb translocation breakpoints were found localized within the minor satDNA of telocentrics, and these sequences contributed symmetrically to the formation of the centromeric region of the Rb chromosomes. These results are important for an understanding of the geometry of Rb translocations and suggest the study of DNA orientation as a new tool for investigating these rearrangements

    The application of PGT-A for carriers of balanced structural chromosomal rearrangements

    Get PDF
    The aim of this study was to analyze differences in chromosomal aberrations and euploidy in embryos of each translocation type and gender of carrier in the case series of 10 couples with balanced translocations who underwent IVF with embryos trophectoderm (TE) biopsy and PGT-A to detect chromosomal aberrations. This is a Case Series (Retrospective study). In each case, controlled ovarian hyperstimulation, oocyte insemination with intracytoplasmic sperm injection (ICSI) and cultivation gave multiple blastocysts, that underwent trophectoderm (TE) biopsy with PGT-A analysis using aCGH and NGS. Number of total unbalanced translocations compared to the number of sporadic aneuploid embryos was 39.6% to 39.6% (50% to 50% of all 37 aneuploid embryos). The highest euploidy rate was in male carrier group–26.7% and the lowest in the Robertsonian translocation carrier group–18.2%. Sporadic aneuploidy–68.2% was highest in Robertsonian translocation carrier group and lowest in female group–11.1%. Chromosomal aberrations related to translocation were highest in female carrier group–77.8% and lowest in Robertsonian translocation carrier group–13.6%. Our study showed that expectancy of total embryo aneuploidy rates will be higher in carriers, than in people with normal karyotype. The prevalence of chromosomal aberrations related to translocation was 4.5 times higher in Reciprocal carrier group than in Robertsonian translocation carrier group. Among maternal and paternal carrier groups, the embryos from female carriers had the lowest euploidy rate, unbalanced translocation rate 4.7 times higher than in the male carrier group and higher total aneuploidy rates.publishersversionPeer reviewe

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: © 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences

    Get PDF
    Chromosomes often serve as one of the most important molecular aspects of studying the evolution of species. Indeed, most of the crucial mutations that led to differentiation of species during the evolution have occurred at the chromosomal level. Furthermore, the analysis of pachytene chromosomes appears to be an invaluable tool for the study of evolution due to its effectiveness in chromosome identification and precise physical gene mapping. By applying fluorescence in situ hybridization of 45S rDNA and CsCent1 probes to cucumber pachytene chromosomes, here, we demonstrate that cucumber chromosomes 1 and 2 may have evolved from fusions of ancestral karyotype with chromosome number n= 12. This conclusion is further supported by the centromeric sequence similarity between cucumber and melon, which suggests that these sequences evolved from a common ancestor. It may be after or during speciation that these sequences were specifically amplified, after which they diverged and specific sequence variants were homogenized. Additionally, a structural change on the centromeric region of cucumber chromosome 4 was revealed by fiber-FISH using the mitochondrial-related repetitive sequences, BAC-E38 and CsCent1. These showed the former sequences being integrated into the latter in multiple regions. The data presented here are useful resources for comparative genomics and cytogenetics of Cucumis and, in particular, the ongoing genome sequencing project of cucumbe

    Identification of chromosomes involved in a Robertsonian translocation in cattle

    Get PDF
    Summary- The chromosomes involved in the robertsonian translocation described after classical Giemsa staining by Darre et al. (1974), were determined using G(GTG), R(RBA) and C(CBG) banding techniques. The chromosomes in question were identified as chromosomes 9 and 23. cattle- chromosome- robertsonian translocation Résumé- Les chromosomes impliqués dans une translocation robertsonienne décrite, tout d’abord, en coloration conventionnelle par Darre et al. (1974) ont été déterminés à l’aide des techniques de marquage G(GTG), R(RBA) et C(CBG). sont le 9 et le 23. boeuf- chromosome- translocation robertsonienne Les chromosomes concerné

    Hexavalents in spermatocytes of Robertsonian heterozygotes between Mus m. domesticus 2n 26 from the Vulcano and Lipari Islands (Aeolian Archipelago, Italy)

    Get PDF
    The size and shape of the chromosomes, as well as the chromosomal domains that compose them, are determinants in the distribution and interaction between the bivalents within the nucleus of spermatocytes in prophase I of meiosis. Thus the nuclear architecture characteristic of the karyotype of a species can be modified by chromosomal changes such as Robertsonian (RB) chromosomes. In this study we analysed the meiotic prophase nuclear organization of the heterozygous spermatocytes from Mus musculus domesticus 2n=26, and the synaptic configuration of the hexavalent formed by the dependent Rb chromosomes Rbs 6.16, 16.10, 10.15, 15.17 and the telocentric chromosomes 6 and 17. Spreads of 88 pachytene spermatocytes from two males were studied and in all of them five metacentric bivalents, four telocentric bivalents, one hexavalent and the XY bivalent were observed. About 48% of the hexavalents formed a chain or a ring of synapsed chromosomes, the latter closed by synapsis between the short arms of telocentric chromosomes 6 and 17. About 52% of hexavalents formed an open chain of 10 synapsed chromosomal arms belonging to 6 chromosomes. In about half of the unsynapsed hexavalents one of the telocentric chromosome short arms appears associated with the X chromosome single axis, which was otherwise normally paired with the Y chromosome. The cluster of pericentromeric heterochromatin mostly determines the hexavalent’s nuclear configuration, dragging the centromeric regions and all the chromosomes towards the nuclear envelope similar to an association of five telocentric bivalents. These reiterated encounters between these chromosomes restrict the interactions with other chromosomal domains and might favour eventual rearrangements within the metacentric, telocentric or hexavalent chromosome subsets. The unsynapsed short arms of telocentric chromosomes frequently bound to the single axis of the X chromosome could further complicate the already complex segregation of hexavalent chromosomes

    The early evolutionary history of neo-sex chromosomes in Neotropical grasshoppers, Boliviacris noroestensis (Orthoptera: Acrididae: Melanoplinae)

    Get PDF
    Neo-sex chromosomes are an important component of chromosome variation in Orthoptera, particularly South American Melanoplinae species, which have proven to be outstanding experimental model system to study the mechanism of sex chromosome evolution in this group of insects. In terms of their origin, most derived sex chromosome mechanisms involve a Robertsonian fusion (i.e. translocation) between the ancestral X chromosome and an autosome. In the grasshopper, Boliviacris noroestensis Ronderos & Cigliano (1990) (Orthoptera: Acrididae: Melanoplinae), our results point to a small degree of differentiation (conserved homology between the XR arm and the neo-Y) of the neo-XY chromosomes, which may be of recent evolutionary origin. However, a simple centric fusion model does not explain their origin, mainly because of the observed reduction in the fundamental number (FN) of arms. We propose two models which, we hope, clarify the genesis of B. noroestensis neo-sex chromosomes. Records of karyotype variation in related species due to multiple rearrangements support our models. We propose a possible adaptive advantage for neo-sex chromosome carriers, such changes perhaps representing the primary force that increases their frequency within natural populations compared with non-fused translocated forms, and occurring without apparent detriment to the microevolutionary forces that may also act, at least at the beginning of the evolutionary history of individuals bearing such neo-sex chromosomes.Fil: Castillo, Elio Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Taffarel, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Marti, Dardo Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; Argentin

    A new Robertsonian translocation, 8/23, in cattle

    Get PDF
    Summary- A new Robertsonian translocation was found in 7 animals of the Grey Ukrainian breed. The translocated chromosome, analyzed by GTG- and RBG-banding, resulted from the fusion of chromosomes 8 and 23. C-banding suggested that the translocated chromosome has a double heterochromatic block. Synaptonemal complex analysis was performed using electron microscopy. cattle / chromosome / Robertsonian translocation Résumé- Une nouvelle translocation robertsonienne bovine, 8/23. On a découvert une nouvelle translocation robertsonienne chez 7 représentants de la race Ukrainienne grise. Le chromosome fusionné, analysé par une technique de bandes GTG et RBG, est le résultat de la fusion des chromosomes 8 et 2.i. La technique de bande C suggère que le chromosome fusionné possède 2 blocs hétérochromatiques. L’analyse des complexes synaptonémiques a été effectuée au microscope électronique. bovin / chromosome / translocation robertsonienn

    Chromosomal segregation in sperm of Robertsonian translocation carriers

    Get PDF
    Purpose To study meiotic segregation patterns of Robertsonian translocations in sperm of male carriers and to assess the frequencies of unbalanced sperm formation. Methods FISH with combination of probes to detect all the variants of meiotic segregation was performed on decondensed sperm nuclei of 5 carriers of der(13;14), 3 carriers of der(14;21) and one carrier of a rare der(13;21) translocation. Results The frequency of sperm with alternate segregation and normal/balanced chromosomal complement ranged from 68 % to 94.4 % (mean 79.2±8.4). Adjacent segregation was detected in 17.9±7.3 % of sperm (from 5.6 % to 29 %). No significant differences in frequencies of gametes with nullisomies and disomies of chromosomes involved in translocations were observed. The mean frequency of 3:0 segregation products was 2.5±1.4 %. Conclusions All analyzed patients showed homogenous segregation pattern with clear predominance of alternate segregation resulting in normal/balanced sperm production. Still, from 5.8–32% (mean 20.4±8.3 %) of sperm was unbalanced, which is the evidence of the increased risk of unbalanced offspring in carriers of Robertsonian translocations. Our results highlight the importance of genetic counseling of Robertsonian translocation carriers prior to ICSI or IVF
    corecore