228 research outputs found

    Machine Learning-based Orchestration Solutions for Future Slicing-Enabled Mobile Networks

    Get PDF
    The fifth generation mobile networks (5G) will incorporate novel technologies such as network programmability and virtualization enabled by Software-Defined Networking (SDN) and Network Function Virtualization (NFV) paradigms, which have recently attracted major interest from both academic and industrial stakeholders. Building on these concepts, Network Slicing raised as the main driver of a novel business model where mobile operators may open, i.e., “slice”, their infrastructure to new business players and offer independent, isolated and self-contained sets of network functions and physical/virtual resources tailored to specific services requirements. While Network Slicing has the potential to increase the revenue sources of service providers, it involves a number of technical challenges that must be carefully addressed. End-to-end (E2E) network slices encompass time and spectrum resources in the radio access network (RAN), transport resources on the fronthauling/backhauling links, and computing and storage resources at core and edge data centers. Additionally, the vertical service requirements’ heterogeneity (e.g., high throughput, low latency, high reliability) exacerbates the need for novel orchestration solutions able to manage end-to-end network slice resources across different domains, while satisfying stringent service level agreements and specific traffic requirements. An end-to-end network slicing orchestration solution shall i) admit network slice requests such that the overall system revenues are maximized, ii) provide the required resources across different network domains to fulfill the Service Level Agreements (SLAs) iii) dynamically adapt the resource allocation based on the real-time traffic load, endusers’ mobility and instantaneous wireless channel statistics. Certainly, a mobile network represents a fast-changing scenario characterized by complex spatio-temporal relationship connecting end-users’ traffic demand with social activities and economy. Legacy models that aim at providing dynamic resource allocation based on traditional traffic demand forecasting techniques fail to capture these important aspects. To close this gap, machine learning-aided solutions are quickly arising as promising technologies to sustain, in a scalable manner, the set of operations required by the network slicing context. How to implement such resource allocation schemes among slices, while trying to make the most efficient use of the networking resources composing the mobile infrastructure, are key problems underlying the network slicing paradigm, which will be addressed in this thesis

    Machine Learning for Next-Generation Intelligent Transportation Systems: A Survey

    Get PDF
    International audienceIntelligent Transportation Systems, or ITS for short, includes a variety of services and applications such as road traffic management, traveler information systems, public transit system management, and autonomous vehicles, to name a few. It is expected that ITS will be an integral part of urban planning and future cities as it will contribute to improved road and traffic safety, transportation and transit efficiency, as well as to increased energy efficiency and reduced environmental pollution. On the other hand, ITS poses a variety of challenges due to its scalability and diverse quality-of-service needs, as well as the massive amounts of data it will generate. In this survey, we explore the use of Machine Learning (ML), which has recently gained significant traction, to enable ITS. We provide a comprehensive survey of the current state-of-the-art of how ML technology has been applied to a broad range of ITS applications and services, such as cooperative driving and road hazard warning, and identify future directions for how ITS can use and benefit from ML technology

    Split Federated Learning for 6G Enabled-Networks: Requirements, Challenges and Future Directions

    Full text link
    Sixth-generation (6G) networks anticipate intelligently supporting a wide range of smart services and innovative applications. Such a context urges a heavy usage of Machine Learning (ML) techniques, particularly Deep Learning (DL), to foster innovation and ease the deployment of intelligent network functions/operations, which are able to fulfill the various requirements of the envisioned 6G services. Specifically, collaborative ML/DL consists of deploying a set of distributed agents that collaboratively train learning models without sharing their data, thus improving data privacy and reducing the time/communication overhead. This work provides a comprehensive study on how collaborative learning can be effectively deployed over 6G wireless networks. In particular, our study focuses on Split Federated Learning (SFL), a technique recently emerged promising better performance compared with existing collaborative learning approaches. We first provide an overview of three emerging collaborative learning paradigms, including federated learning, split learning, and split federated learning, as well as of 6G networks along with their main vision and timeline of key developments. We then highlight the need for split federated learning towards the upcoming 6G networks in every aspect, including 6G technologies (e.g., intelligent physical layer, intelligent edge computing, zero-touch network management, intelligent resource management) and 6G use cases (e.g., smart grid 2.0, Industry 5.0, connected and autonomous systems). Furthermore, we review existing datasets along with frameworks that can help in implementing SFL for 6G networks. We finally identify key technical challenges, open issues, and future research directions related to SFL-enabled 6G networks

    An overview of machine learning and 5G for people with disabilities

    Get PDF
    Currently, over a billion people, including children (or about 15% of the world’s population), are estimated to be living with disability, and this figure is going to increase to beyond two billion by 2050. People with disabilities generally experience poorer levels of health, fewer achievements in education, fewer economic opportunities, and higher rates of poverty. Artificial intelligence and 5G can make major contributions towards the assistance of people with disabilities, so they can achieve a good quality of life. In this paper, an overview of machine learning and 5G for people with disabilities is provided. For this purpose, the proposed 5G network slicing architecture for disabled people is introduced. Different application scenarios and their main benefits are considered to illustrate the interaction of machine learning and 5G. Critical challenges have been identified and addressed.This work has been supported by the Agencia Estatal de Investigación of Ministerio de Ciencia e Innovación of Spain under project PID2019-108713RB-C51 MCIN/ AEI /10.13039/501100011033.Postprint (published version

    NFV orchestration in edge and fog scenarios

    Get PDF
    Mención Internacional en el título de doctorLas infraestructuras de red actuales soportan una variedad diversa de servicios como video bajo demanda, video conferencias, redes sociales, sistemas de educación, o servicios de almacenamiento de fotografías. Gran parte de la población mundial ha comenzado a utilizar estos servicios, y los utilizan diariamente. Proveedores de Cloud y operadores de infraestructuras de red albergan el tráfico de red generado por estos servicios, y sus tareas de gestión no solo implican realizar el enrutamiento del tráfico, sino también el procesado del tráfico de servicios de red. Tradicionalmente, el procesado del tráfico ha sido realizado mediante aplicaciones/ programas desplegados en servidores que estaban dedicados en exclusiva a tareas concretas como la inspección de paquetes. Sin embargo, en los últimos anos los servicios de red se han virtualizado y esto ha dado lugar al paradigma de virtualización de funciones de red (Network Function Virtualization (NFV) siguiendo las siglas en ingles), en el que las funciones de red de un servicio se ejecutan en contenedores o máquinas virtuales desacopladas de la infraestructura hardware. Como resultado, el procesado de tráfico se ha ido haciendo más flexible gracias al laxo acople del software y hardware, y a la posibilidad de compartir funciones de red típicas, como firewalls, entre los distintos servicios de red. NFV facilita la automatización de operaciones de red, ya que tareas como el escalado, o la migración son típicamente llevadas a cabo mediante un conjunto de comandos previamente definidos por la tecnología de virtualización pertinente, bien mediante contenedores o máquinas virtuales. De todos modos, sigue siendo necesario decidir el en rutamiento y procesado del tráfico de cada servicio de red. En otras palabras, que servidores tienen que encargarse del procesado del tráfico, y que enlaces de la red tienen que utilizarse para que las peticiones de los usuarios lleguen a los servidores finales, es decir, el conocido como embedding problem. Bajo el paraguas del paradigma NFV, a este problema se le conoce en inglés como Virtual Network Embedding (VNE), y esta tesis utiliza el termino “NFV orchestration algorithm” para referirse a los algoritmos que resuelven este problema. El problema del VNE es NP-hard, lo cual significa que que es imposible encontrar una solución optima en un tiempo polinómico, independientemente del tamaño de la red. Como consecuencia, la comunidad investigadora y de telecomunicaciones utilizan heurísticos que encuentran soluciones de manera más rápida que productos para la resolución de problemas de optimización. Tradicionalmente, los “NFV orchestration algorithms” han intentado minimizar los costes de despliegue derivados de las soluciones asociadas. Por ejemplo, estos algoritmos intentan no consumir el ancho de banda de la red, y usar rutas cortas para no utilizar tantos recursos. Además, una tendencia reciente ha llevado a la comunidad investigadora a utilizar algoritmos que minimizan el consumo energético de los servicios desplegados, bien mediante la elección de dispositivos con un consumo energético más eficiente, o mediante el apagado de dispositivos de red en desuso. Típicamente, las restricciones de los problemas de VNE se han resumido en un conjunto de restricciones asociadas al uso de recursos y consumo energético, y las soluciones se diferenciaban por la función objetivo utilizada. Pero eso era antes de la 5a generación de redes móviles (5G) se considerase en el problema de VNE. Con la aparición del 5G, nuevos servicios de red y casos de uso entraron en escena. Los estándares hablaban de comunicaciones ultra rápidas y fiables (Ultra-Reliable and Low Latency Communications (URLLC) usando las siglas en inglés) con latencias por debajo de unos pocos milisegundos y fiabilidades del 99.999%, una banda ancha mejorada (enhanced Mobile Broadband (eMBB) usando las siglas en inglés) con notorios incrementos en el flujo de datos, e incluso la consideración de comunicaciones masivas entre maquinas (Massive Machine-Type Communications (mMTC) usando las siglas en inglés) entre dispositivos IoT. Es más, paradigmas como edge y fog computing se incorporaron a la tecnología 5G, e introducían la idea de tener dispositivos de computo más cercanos al usuario final. Como resultado, el problema del VNE tenía que incorporar los nuevos requisitos como restricciones a tener en cuenta, y toda solución debía satisfacer bajas latencias, alta fiabilidad, y mayores tasas de transmisión. Esta tesis estudia el problema des VNE, y propone algunos heurísticos que lidian con las restricciones asociadas a servicios 5G en escenarios edge y fog, es decir, las soluciones propuestas se encargan de asignar funciones virtuales de red a servidores, y deciden el enrutamiento del trafico en las infraestructuras 5G con dispositivos edge y fog. Para evaluar el rendimiento de las soluciones propuestas, esta tesis estudia en primer lugar la generación de grafos que representan redes 5G. Los mecanismos propuestos para la generación de grafos sirven para representar distintos escenarios 5G. En particular, escenarios de federación en los que varios dominios comparten recursos entre ellos. Los grafos generados también representan servidores en el edge, así como dispositivos fog con una batería limitada. Además, estos grafos tienen en cuenta los requisitos de estándares, y la demanda que se espera en las redes 5G. La generación de grafos propuesta sirve para representar escenarios federación en los que varios dominios comparten recursos entre ellos, y redes 5G con servidores edge, así como dispositivos fog estáticos o móviles con una batería limitada. Los grafos generados para infraestructuras 5G tienen en cuenta los requisitos de estándares, y la demanda de red que se espera en las redes 5G. Además, los grafos son diferentes en función de la densidad de población, y el área de estudio, es decir, si es una zona industrial, una autopista, o una zona urbana. Tras detallar la generación de grafos que representan redes 5G, esta tesis propone algoritmos de orquestación NFV para resolver con el problema del VNE. Primero, se centra en escenarios federados en los que los servicios de red se tienen que asignar no solo a la infraestructura de un dominio, sino a los recursos compartidos en la federación de dominios. Dos problemas diferentes han sido estudiados, uno es el problema del VNE propiamente dicho sobre una infraestructura federada, y el otro es la delegación de servicios de red. Es decir, si un servicio de red se debe desplegar localmente en un dominio, o en los recursos compartidos por la federación de dominios; a sabiendas de que el último caso supone el pago de cuotas por parte del dominio local a cambio del despliegue del servicio de red. En segundo lugar, esta tesis propone OKpi, un algoritmo de orquestación NFV para conseguir la calidad de servicio de las distintas slices de las redes 5G. Conceptualmente, el slicing consiste en partir la red de modo que cada servicio de red sea tratado de modo diferente dependiendo del trozo al que pertenezca. Por ejemplo, una slice de eHealth reservara los recursos de red necesarios para conseguir bajas latencias en servicios como operaciones quirúrgicas realizadas de manera remota. Cada trozo (slice) está destinado a unos servicios específicos con unos requisitos muy concretos, como alta fiabilidad, restricciones de localización, o latencias de un milisegundo. OKpi es un algoritmo de orquestación NFV que consigue satisfacer los requisitos de servicios de red en los distintos trozos, o slices de la red. Tras presentar OKpi, la tesis resuelve el problema del VNE en redes 5G con dispositivos fog estáticos y móviles. El algoritmo de orquestación NFV presentado tiene en cuenta las limitaciones de recursos de computo de los dispositivos fog, además de los problemas de falta de cobertura derivados de la movilidad de los dispositivos. Para concluir, esta tesis estudia el escalado de servicios vehiculares Vehicle-to-Network (V2N), que requieren de bajas latencias para servicios como la prevención de choques, avisos de posibles riesgos, y conducción remota. Para estos servicios, los atascos y congestiones en la carretera pueden causar el incumplimiento de los requisitos de latencia. Por tanto, es necesario anticiparse a esas circunstancias usando técnicas de series temporales que permiten saber el tráfico inminente en los siguientes minutos u horas, para así poder escalar el servicio V2N adecuadamente.Current network infrastructures handle a diverse range of network services such as video on demand services, video-conferences, social networks, educational systems, or photo storage services. These services have been embraced by a significant amount of the world population, and are used on a daily basis. Cloud providers and Network operators’ infrastructures accommodate the traffic rates that the aforementioned services generate, and their management tasks do not only involve the traffic steering, but also the processing of the network services’ traffic. Traditionally, the traffic processing has been assessed via applications/programs deployed on servers that were exclusively dedicated to a specific task as packet inspection. However, in recent years network services have stated to be virtualized and this has led to the Network Function Virtualization (Network Function Virtualization (NFV)) paradigm, in which the network functions of a service run on containers or virtual machines that are decoupled from the hardware infrastructure. As a result, the traffic processing has become more flexible because of the loose coupling between software and hardware, and the possibility of sharing common network functions, as firewalls, across multiple network services. NFV eases the automation of network operations, since scaling and migrations tasks are typically performed by a set of commands predefined by the virtualization technology, either containers or virtual machines. However, it is still necessary to decide the traffic steering and processing of every network service. In other words, which servers will hold the traffic processing, and which are the network links to be traversed so the users’ requests reach the final servers, i.e., the network embedding problem. Under the umbrella of NFV, this problem is known as Virtual Network Embedding (VNE), and this thesis refers as “NFV orchestration algorithms” to those algorithms solving such a problem. The VNE problem is a NP-hard, meaning that it is impossible to find optimal solutions in polynomial time, no matter the network size. As a consequence, the research and telecommunications community rely on heuristics that find solutions quicker than a commodity optimization solver. Traditionally, NFV orchestration algorithms have tried to minimize the deployment costs derived from their solutions. For example, they try to not exhaust the network bandwidth, and use short paths to use less network resources. Additionally, a recent tendency led the research community towards algorithms that minimize the energy consumption of the deployed services, either by selecting more energy efficient devices or by turning off those network devices that remained unused. VNE problem constraints were typically summarized in a set of resources/energy constraints, and the solutions differed on which objectives functions were aimed for. But that was before 5th generation of mobile networks (5G) were considered in the VNE problem. With the appearance of 5G, new network services and use cases started to emerge. The standards talked about Ultra Reliable Low Latency Communication (Ultra-Reliable and Low Latency Communications (URLLC)) with latencies below few milliseconds and 99.999% reliability, an enhanced mobile broadband (enhanced Mobile Broadband (eMBB)) with significant data rate increases, and even the consideration of massive machine-type communications (Massive Machine-Type Communications (mMTC)) among Internet of Things (IoT) devices. Moreover, paradigms such as edge and fog computing blended with the 5G technology to introduce the idea of having computing devices closer to the end users. As a result, the VNE problem had to incorporate the new requirements as constraints to be taken into account, and every solution should either satisfy low latencies, high reliability, or larger data rates. This thesis studies the VNE problem, and proposes some heuristics tackling the constraints related to 5G services in Edge and fog scenarios, that is, the proposed solutions assess the assignment of Virtual Network Functions to resources, and the traffic steering across 5G infrastructures that have Edge and Fog devices. To evaluate the performance of the proposed solutions, the thesis studies first the generation of graphs that represent 5G networks. The proposed mechanisms to generate graphs serve to represent diverse 5G scenarios. In particular federation scenarios in which several domains share resources among themselves. The generated graphs also represent edge servers, so as fog devices with limited battery capacity. Additionally, these graphs take into account the standard requirements, and the expected demand for 5G networks. Moreover, the graphs differ depending on the density of population, and the area of study, i.e., whether it is an industrial area, a highway, or an urban area. After detailing the generation of graphs representing the 5G networks, this thesis proposes several NFV orchestration algorithms to tackle the VNE problem. First, it focuses on federation scenarios in which network services should be assigned not only to a single domain infrastructure, but also to the shared resources of the federation of domains. Two different problems are studied, one being the VNE itself over a federated infrastructure, and the other the delegation of network services. That is, whether a network service should be deployed in a local domain, or in the pool of resources of the federation domain; knowing that the latter charges the local domain for hosting the network service. Second, the thesis proposes OKpi, a NFV orchestration algorithm to meet 5G network slices quality of service. Conceptually, network slicing consists in splitting the network so network services are treated differently based on the slice they belong to. For example, an eHealth network slice will allocate the network resources necessary to meet low latencies for network services such as remote surgery. Each network slice is devoted to specific services with very concrete requirements, as high reliability, location constraints, or 1ms latencies. OKpi is a NFV orchestration algorithm that meets the network service requirements among different slices. It is based on a multi-constrained shortest path heuristic, and its solutions satisfy latency, reliability, and location constraints. After presenting OKpi, the thesis tackles the VNE problem in 5G networks with static/moving fog devices. The presented NFV orchestration algorithm takes into account the limited computing resources of fog devices, as well as the out-of-coverage problems derived from the devices’ mobility. To conclude, this thesis studies the scaling of Vehicle-to-Network (V2N) services, which require low latencies for network services as collision avoidance, hazard warning, and remote driving. For these services, the presence of traffic jams, or high vehicular traffic congestion lead to the violation of latency requirements. Hence, it is necessary to anticipate to such circumstances by using time-series techniques that allow to derive the incoming vehicular traffic flow in the next minutes or hours, so as to scale the V2N service accordingly.The 5G Exchange (5GEx) project (2015-2018) was an EU-funded project (H2020-ICT-2014-2 grant agreement 671636). The 5G-TRANSFORMER project (2017-2019) is an EU-funded project (H2020-ICT-2016-2 grant agreement 761536). The 5G-CORAL project (2017-2019) is an EU-Taiwan project (H2020-ICT-2016-2 grant agreement 761586).Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Ioannis Stavrakakis.- Secretario: Pablo Serrano Yáñez-Mingot.- Vocal: Paul Horatiu Patra

    A Survey on Explainable AI for 6G O-RAN: Architecture, Use Cases, Challenges and Research Directions

    Full text link
    The recent O-RAN specifications promote the evolution of RAN architecture by function disaggregation, adoption of open interfaces, and instantiation of a hierarchical closed-loop control architecture managed by RAN Intelligent Controllers (RICs) entities. This paves the road to novel data-driven network management approaches based on programmable logic. Aided by Artificial Intelligence (AI) and Machine Learning (ML), novel solutions targeting traditionally unsolved RAN management issues can be devised. Nevertheless, the adoption of such smart and autonomous systems is limited by the current inability of human operators to understand the decision process of such AI/ML solutions, affecting their trust in such novel tools. eXplainable AI (XAI) aims at solving this issue, enabling human users to better understand and effectively manage the emerging generation of artificially intelligent schemes, reducing the human-to-machine barrier. In this survey, we provide a summary of the XAI methods and metrics before studying their deployment over the O-RAN Alliance RAN architecture along with its main building blocks. We then present various use-cases and discuss the automation of XAI pipelines for O-RAN as well as the underlying security aspects. We also review some projects/standards that tackle this area. Finally, we identify different challenges and research directions that may arise from the heavy adoption of AI/ML decision entities in this context, focusing on how XAI can help to interpret, understand, and improve trust in O-RAN operational networks.Comment: 33 pages, 13 figure

    Extending P4 in-band telemetry to user equipment for latency-and localization-aware autonomous networking with AI forecasting

    Get PDF
    In beyond-5G networks, detailed end-to-end monitoring of specific application traffic will be required along with the access-backhaul-cloud continuum to enable low latency service due to local edge steering. Current monitoring solutions are confined to specific network segments. In-band network telemetry (INT) technologies for software defined network (SDN) programmable data planes based on the P4 language are effective in the backhaul network segment, although limited to inter-switch latency; therefore, link latencies including wireless and optical segments are excluded from INT monitoring. Moreover, information such as user equipment (UE) geolocation would allow detailed mobility monitoring and improved cloud-edge steering policies. However, the synchronization between latency and location information, typically provided by different platforms, is hard to achieve with current monitoring systems. In this paper, P4-based INT is proposed to be thoroughly extended involving UE. The INT mechanism is designed to provide synchronized and accurate end-to-end latency and geolocation information, enabling decentralized steering policies, i.e., involving UE and selected switches, without SDN controller intervention. The proposal also includes an artificial-intelligence-assisted forecast system able to predict latency and geolocation in advance and trigger faster edge steering
    corecore